CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A Simple Urea Approach to N-Doped $\alpha$-Mo$_{2}$C with Enhanced Superconductivity |
Longfu Li1, Lei Shi2, Lingyong Zeng1, Kuan Li1, Peifeng Yu1, Kangwang Wang1, Chao Zhang1, Rui Chen1, Zaichen Xiang1, Yunwei Zhang2, and Huixia Luo1* |
1School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite & Functional Materials, Sun Yat-Sen University, Guangzhou 510275, China 2School of Physics, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, Guangzhou 510275, China
|
|
Cite this article: |
Longfu Li, Lei Shi, Lingyong Zeng et al 2024 Chin. Phys. Lett. 41 107401 |
|
|
Abstract Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature ($T_{\rm c}$) of the parent superconducting materials. Here, a new simple urea approach is developed to synthesize the N-doped $\alpha$-Mo$_{2}$C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo$_{2}$C$_{1-x}$N$_{x}$ ($0\leqslant x \leqslant 0.49$) compositions. X-ray diffraction results show that the structure of $\alpha$-Mo$_{2}$C remains unchanged and there is a variation of lattice parameters with nitrogen doping. Resistivity, magnetic susceptibility, and heat capacity measurement results confirm that $T_{\rm c}$ was strongly increased from 2.68 K ($x=0$) to 7.05 K ($x=0.49$). First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening, which enhances electron–phonon coupling. This results in an increase in $T_{\rm c}$ and a sharp rise in the upper critical field. Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.
|
|
Received: 12 August 2024
Published: 26 October 2024
|
|
PACS: |
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.25.F-
|
(Transport properties)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
|
|
|
[1] | Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, and Fan H J 2016 Adv. Sci. 3 1500286 |
[2] | Hardy G F and Hulm J K 1954 Phys. Rev. 93 1004 |
[3] | Matthias B T and Hulm J K 1952 Phys. Rev. 87 799 |
[4] | Willens R H, Buehler E, and Matthias B T 1967 Phys. Rev. 159 327 |
[5] | Morton N, James B W, Wostenholm G H, Pomfret D G, Davies M R, and Dykins J L 1971 J. Less-Common Met. 25 97 |
[6] | Ge Y, Ma S, Bao K, Tao Q, Zhao X, Feng X, Li L, Liu B, Zhu P, and Cui T 2019 Inorg. Chem. Front. 6 1282 |
[7] | Ge Y, Song H, Bao K, Ma S, Li L, Tao Q, Zhu P, Liu B, Duan D, and Cui T 2021 J. Alloys Compd. 881 160631 |
[8] | Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, and Barsoum M W 2013 J. Am. Chem. Soc. 135 15966 |
[9] | Naguib M, Mochalin V N, Barsoum M W, and Gogotsi Y 2014 Adv. Mater. 26 992 |
[10] | Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, and Talapin D V 2020 Science 369 979 |
[11] | Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, and Barsoum M W 2016 Adv. Funct. Mater. 26 3118 |
[12] | Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W, and Rosen J 2015 Scr. Mater. 108 147 |
[13] | Anasori B, Lukatskaya M R, and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098 |
[14] | Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, and Ren W C 2015 Nat. Mater. 14 1135 |
[15] | Fan Y, Xu C, Liu X, Ma C, Yin Y, Cheng H M, Ren W, and Li X 2020 NPG Asia Mater. 12 60 |
[16] | Caylan O R and Buke G C 2021 Sci. Rep. 11 8247 |
[17] | Ravuri S, Wrobel P S, Gorantla S, Bazioti C, Sunding M F, Lis K, Jedrzejewski R, Sartori S, Diplas S, Gunnæs A E, and Bachmatiuk A 2024 Nanotechnology 35 155601 |
[18] | Zeng L Y, Hu X W, Zhou Y Z, Liu Y, Boswell M, Xie W W, Li K, Li L F, Yu P F, Zhang C, Guo W M, Yao D X, and Luo H X 2023 Innovat. Mater. 1 100042 |
[19] | Margine E R and Giustino F 2014 Phys. Rev. B 90 014518 |
[20] | Bogoljubov N N, Tolmachov V V, and Širkov D V 1958 Fortschr. Phys. 6 605 |
[21] | Suhl H, Matthias B T, and Walker L R 1959 Phys. Rev. Lett. 3 552 |
[22] | Kawashima T, Takayama-Muromachi E, and McMillan P F 2007 Physica C 460–462 651 |
[23] | Lee J, Park J K, Lee J W, Heo Y, Oh Y S, Lee J S, Cho J, and Jeen H 2020 RSC Adv. 10 44339 |
[24] | Yin X Z, Wang H, Wang Q H, Jiao N, Ni M Y, Zheng M M, Lu H Y, and Zhang P 2023 Chin. Phys. Lett. 40 097404 |
[25] | Zhao N N, Guo P J, Lu X Q, Han Q, Liu K, and Lu Z Y 2020 Phys. Rev. B 101 195144 |
[26] | Wei H, Wang J, Lin Q, Zou Y, Chen X, Zhao H, Li J, Jin H, Lei Y, and Wang S 2021 Nano Energy 86 106047 |
[27] | Jing S, Zhang L, Luo L, Lu J, Yin S, Shen P K, and Tsiakaras P 2018 Appl. Catal. B: Environ. 224 533 |
[28] | Chi J Q, Yan K L, Gao W K, Dong B, Shang X, Liu Y R, Li X, Chai Y M, and Liu C G 2017 J. Alloys Compd. 714 26 |
[29] | Jiang R, Fan J, Hu L, Dou Y, Mao X, and Wang D 2018 Electrochim. Acta 261 578 |
[30] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[31] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[32] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[33] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[34] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[35] | Giordano C, Erpen C, Yao W T, Milke B, and Antonietti M 2009 Chem. Mater. 21 5136 |
[36] | Jin T, Sang X, Unocic R R, Kinch R T, Liu X, Hu J, Liu H, and Dai S 2018 Adv. Mater. 30 1707512 |
[37] | Chen P, Xiao T Y, Qian Y H, Li S S, and Yu S H 2013 Adv. Mater. 25 3192 |
[38] | Li X Z, Fang Y Y, Lin X Q, Tian M, An X C, Fu Y, Li R, Jin J, and Ma J T 2015 J. Mater. Chem. A 3 17392 |
[39] | Zhao Y, Kamiya K, Hashimoto K, and Nakanishi S 2015 J. Am. Chem. Soc. 137 110 |
[40] | Pan L F, Li Y H, Yang S, Liu P F, Yu M Q, and Yang H G 2014 Chem. Commun. 50 13135 |
[41] | Liu Y, Yu G, Li G D, Sun Y, Asefa T, Chen W, and Zou X 2015 Angew. Chem. Int. Ed. 54 10752 |
[42] | Zhang Z, Fang Y Q, Wang D, Zhang S N, Mu G, and Huang F Q 2020 J. Mater. Chem. C 8 2682 |
[43] | Clogston A M 1962 Phys. Rev. Lett. 9 266 |
[44] | Zeng L Y, Hu X W, Boubeche M, Li K, Li L F, Yu P F, Wang K W, Zhang C, Jin K, Yao D X, and Luo H X 2023 Sci. Chin. Phys. Mech. & Astron. 66 277412 |
[45] | He Y Y, You Y X, Zeng L Y, Guo S, Zhou H W, Li K, Huang Y H, Yu P F, Zhang C, Cao C, and Luo H X 2022 Phys. Rev. B 105 054513 |
[46] | Wu J, Xiao G, Zhu Q, Liu B, Cui Y, Wu S, Cao G H, and Ren Z 2022 Inorg. Chem. Front. 9 4594 |
[47] | Zhu X, Han F, Mu G, Cheng P, Tang J, Ju J, Tanigaki K, and Wen H H 2010 Phys. Rev. B 81 104525 |
[48] | Luo H X, Xie W W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y M, and Cava R J 2016 Chem. Mater. 28 1927 |
[49] | McMillan W L 1968 Phys. Rev. 167 331 |
[50] | Zeng L Y, Hu X W, Guo S, Lin G T, Song J, Li K, He Y Y, Huang Y H, Zhang C, Yu P F, Ma J, Yao D X, and Luo H X 2022 Phys. Rev. B 106 134501 |
[51] | Xiao G R, Zhu Q Q, Cui Y W, Yang W Z, Li B Z, Wu S Q, Cao G H, and Ren Z 2021 Sci. Chin. Phys. Mech. & Astron. 64 107411 |
[52] | Zhou Y X, Li B, Lou Z F, Chen H C, Chen Q, Xu B J, Wu C X, Du J H, Yang J H, Wang H D, and Fang M H 2021 Sci. Chin. Phys. Mech. & Astron. 64 247411 |
[53] | Boubeche M, Yu J, Chushan L, Huichao W, Zeng L Y, He Y Y, Wang X P, Su W Z, Wang M, Yao D X, Wang Z J, and Luo H X 2021 Chin. Phys. Lett. 38 037401 |
[54] | Klein O 1952 Nature 169 578 |
[55] | Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 037002 |
[56] | Jin X T, Yan X W, and Gao M 2020 Phys. Rev. B 101 134518 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|