THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Precise Determination of the Bottom-Quark On-Shell Mass Using Its Four-Loop Relation to the $\overline{\rm MS}$-Scheme Running Mass |
Shun-Yue Ma1, Xu-Dong Huang2*, Xu-Chang Zheng1, and Xing-Gang Wu1 |
1Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China 2College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
|
|
Cite this article: |
Shun-Yue Ma, Xu-Dong Huang, Xu-Chang Zheng et al 2024 Chin. Phys. Lett. 41 101201 |
|
|
Abstract We explore the properties of the bottom-quark on-shell mass ($M_b$) by using its relation to the $\overline{\rm MS}$ mass (${\overline m}_b$). At present, this $\overline{\rm MS}$-on-shell relation has been known up to four-loop QCD corrections, which however still has a $\sim$ $2\%$ scale uncertainty by taking the renormalization scale as ${\overline m}_b({\overline m}_b)$ and varying it within the usual range of $[{\overline m}_b({\overline m}_b)/2,\, 2 {\overline m}_b({\overline m}_b)]$. The principle of maximum conformality (PMC) is adopted to achieve a more precise $\overline{\rm MS}$-on-shell relation by eliminating such scale uncertainty. As a step forward, we also estimate the magnitude of the uncalculated higher-order terms by using the Padé approximation approach. Numerically, by using the $\overline{\rm MS}$ mass ${\overline m}_b({\overline m}_b)=4.183\pm0.007$ GeV as an input, our predicted value for the bottom-quark on-shell mass becomes $M_b\simeq 5.372^{+0.091}_{-0.075}$ GeV, where the uncertainty is the squared average of the ones caused by $\Delta \alpha_s(M_Z)$, $\Delta {\overline m}_b({\overline m}_b)$, and the estimated magnitude of the higher-order terms.
|
|
Received: 27 June 2024
Editors' Suggestion
Published: 22 October 2024
|
|
PACS: |
12.38.Bx
|
(Perturbative calculations)
|
|
12.15.Ff
|
(Quark and lepton masses and mixing)
|
|
12.10.Kt
|
(Unification of couplings; mass relations)
|
|
|
|
|
[1] | Tarrach R 1981 Nucl. Phys. B 183 384 |
[2] | 't Hooft G 1973 Nucl. Phys. B 61 455 |
[3] | Bardeen W A, Buras A J, Duke D W, and Muta T 1978 Phys. Rev. D 18 3998 |
[4] | Beneke M and Braun V M 1995 Phys. Lett. B 348 513 |
[5] | Neubert M 1995 Phys. Rev. D 51 5924 |
[6] | Beneke M 1999 Phys. Rep. 317 1 |
[7] | Gray N, Broadhurst D J, Grafe W, and Schilcher K 1990 Z. Phys. C 48 673 |
[8] | Chetyrkin K G and Steinhauser M 2000 Nucl. Phys. B 573 617 |
[9] | Melnikov K and Ritbergen T V 2000 Phys. Lett. B 482 99 |
[10] | Jegerlehner F, Kalmykov M Y, and Veretin O 2003 Nucl. Phys. B 658 49 |
[11] | Jegerlehner F and Kalmykov M Y 2003 Acta Phys. Pol. B 34 5335 |
[12] | Faisst M, Kühn J H, and Veretin O 2004 Phys. Lett. B 589 35 |
[13] | Marquard P, Mihaila L, Piclum J H, and Steinhauser M 2007 Nucl. Phys. B 773 1 |
[14] | Marquard P, Smirnov A V, Smirnov V A, and Steinhauser M 2015 Phys. Rev. Lett. 114 142002 |
[15] | Marquard P, Smirnov A V, Smirnov V A, Steinhauser M, and Wellmann D 2016 Phys. Rev. D 94 074025 |
[16] | Alam Khan M S A 2023 Phys. Rev. D 108 074029 |
[17] | Kataev A L and Molokoedov V S 2018 JETP Lett. 108 777 |
[18] | Kataev A L and Molokoedov V S 2019 Theor. Math. Phys. 200 1374 |
[19] | Kataev A L and Molokoedov V S 2020 Eur. Phys. J. C 80 1160 |
[20] | Politzer H D 1973 Phys. Rev. Lett. 30 1346 |
[21] | Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343 |
[22] | Politzer H D 1974 Phys. Rep. 14 129 |
[23] | Gross D J and Wilczek F 1973 Phys. Rev. D 8 3633 |
[24] | Chetyrkin K G 2005 Nucl. Phys. B 710 499 |
[25] | Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002 |
[26] | Vermaseren J A M, Larin S A, and van Ritbergen T 1997 Phys. Lett. B 405 327 |
[27] | Chetyrkin K G 1997 Phys. Lett. B 404 161 |
[28] | Baikov P A, Chetyrkin K G, and Kühn J H 2014 J. High Energy Phys. 2014(10) 76 |
[29] | Wu X G, Brodsky S J, and Mojaza M 2013 Prog. Part. Nucl. Phys. 72 44 |
[30] | Wu X G, Ma Y, Wang S Q, Fu H B, Ma H H, Brodsky S J, and Mojaza M 2015 Rep. Prog. Phys. 78 126201 |
[31] | Navas S et al. [Particle Data Group] 2024 Phys. Rev. D 110 030001 |
[32] | Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038 |
[33] | Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026 |
[34] | Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002 |
[35] | Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001 |
[36] | Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027 |
[37] | Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006 |
[38] | Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182 |
[39] | Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706 |
[40] | Di Giustino L, Brodsky S J, Ratcliffe P G, Wu X G, and Wang S Q 2024 Prog. Part. Nucl. Phys. 135 104092 |
[41] | Huang X D, Wu X G, Zheng X C, Yan J, Wu Z F, and Ma H H 2024 Chin. Phys. C 48 053113 |
[42] | Basdevant J L 1972 Fortschr. Phys. 20 283 |
[43] | Samuel M A, Li G, and Steinfelds E 1994 Phys. Lett. B 323 188 |
[44] | Samuel M A, Ellis J, and Karliner M 1995 Phys. Rev. Lett. 74 4380 |
[45] | Herren F and Steinhauser M 2018 Comput. Phys. Commun. 224 333 |
[46] | Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300 |
[47] | Shen J M, Qin B H, Yan J, Wang S Q, and Wu X G 2023 J. High Energy Phys. 2023(07) 109 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|