Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 097403    DOI: 10.1088/0256-307X/40/9/097403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Majorana Corner Modes and Flat-Band Majorana Edge Modes in Superconductor/Topological-Insulator/Superconductor Junctions
Xiao-Ting Chen1†, Chun-Hui Liu2,3†, Dong-Hui Xu4,5*, and Chui-Zhen Chen1*
1Institute for Advanced Study and School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Department of Physics, Chongqing University, Chongqing 400044, China
5Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China
Cite this article:   
Xiao-Ting Chen, Chun-Hui Liu, Dong-Hui Xu et al  2023 Chin. Phys. Lett. 40 097403
Download: PDF(4361KB)   PDF(mobile)(2904KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, superconductors with higher-order topology have stimulated extensive attention and research interest. Higher-order topological superconductors exhibit unconventional bulk-boundary correspondence, thus allow exotic lower-dimensional boundary modes, such as Majorana corner and hinge modes. However, higher-order topological superconductivity has yet to be found in naturally occurring materials. We investigate higher-order topology in a two-dimensional Josephson junction comprised of two s-wave superconductors separated by a topological insulator thin film. We find that zero-energy Majorana corner modes, a boundary fingerprint of higher-order topological superconductivity, can be achieved by applying magnetic field. When an in-plane Zeeman field is applied to the system, two corner modes appear in the superconducting junction. Furthermore, we also discover a two-dimensional nodal superconducting phase which supports flat-band Majorana edge modes connecting the bulk nodes. Importantly, we demonstrate that zero-energy Majorana corner modes are stable when increasing the thickness of topological insulator thin film.
Received: 05 June 2023      Published: 06 September 2023
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.25.N- (Response to electromagnetic fields)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/097403       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/097403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Ting Chen
Chun-Hui Liu
Dong-Hui Xu
and Chui-Zhen Chen
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Alicea J 2012 Rep. Prog. Phys. 75 076501
[4] Beenakker C 2013 Annu. Rev. Condens. Matter Phys. 4 113
[5] Lutchyn R M, Bakkers E P, Kouwenhoven L P, Krogstrup P, Marcus C M, and Oreg Y 2018 Nat. Rev. Mater. 3 52
[6] Flensberg K, von Oppen F, and Stern A 2021 Nat. Rev. Mater. 6 944
[7] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[8] Kitaev A Y 2003 Ann. Phys. 303 2
[9] Nayak C, Simon S H, Stern A, Freedman M, and Das S S 2008 Rev. Mod. Phys. 80 1083
[10] Alicea J, Oreg Y, Refael G, von Oppen F, and Fisher M P A 2011 Nat. Phys. 7 412
[11] Flensberg K 2011 Phys. Rev. Lett. 106 090503
[12] van Heck B, Akhmerov A R, Hassler F, Burrello M, and Beenakker C W J 2012 New J. Phys. 14 035019
[13] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, and Alicea J 2016 Phys. Rev. X 6 031016
[14] Shao L B, Wang Z D, Shen R, Sheng L, Wang B G, and Xing D Y 2017 Chin. Phys. Lett. 34 067401
[15] Kitaev A Y 2001 Phys. Usp. 44 131
[16] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2012 Science 336 1003
[17] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, and Shtrikman H 2012 Nat. Phys. 8 887
[18] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, and Xu H Q 2012 Nano Lett. 12 6414
[19] Lutchyn R M, Sau J D, and Das S S 2010 Phys. Rev. Lett. 105 077001
[20] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science 360 182
[21] Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, and Ding H 2019 Nat. Phys. 15 1181
[22] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, and Gao H J 2018 Science 362 333
[23] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056
[24] Zhu S Y, Kong L Y, Cao L, Chen H, Papaj M, Du S, Xing Y Q, Liu W Y, Wang D F, Shen C M et al. 2020 Science 367 189
[25] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, and Freedman M H 2017 Phys. Rev. B 95 235305
[26] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, and Feng D L 2019 Chin. Phys. Lett. 36 057403
[27] Liu S, Nie S M, Qi Y P, Guo Y F, Yuan H T, Yang L X, Chen Y L, Wang M X, and Liu Z K 2021 Chin. Phys. Lett. 38 077302
[28] Pan D, Song H, Zhang S, Liu L, Wen L, Liao D, Zhuo R, Wang Z, Zhang Z, Yang S, Ying J, Miao W, Shang R, Zhang H, and Zhao J 2022 Chin. Phys. Lett. 39 058101
[29] Peng Y, Bao Y, and von Oppen F 2017 Phys. Rev. B 95 235143
[30] Song Z D, Fang Z, and Fang C 2017 Phys. Rev. Lett. 119 246402
[31] Langbehn J, Peng Y, Trifunovic L, von Oppen F, and Brouwer P W 2017 Phys. Rev. Lett. 119 246401
[32] Benalcazar W A, Bernevig B A, and Hughes T L 2017 Phys. Rev. B 96 245115
[33] Benalcazar W A, Bernevig B A, and Hughes T L 2017 Science 357 61
[34] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, and Neupert T 2018 Sci. Adv. 4 eaat0346
[35] van Miert G and Ortix C 2018 Phys. Rev. B 98 081110
[36] Ezawa M 2018 Phys. Rev. B 97 241402
[37] Franca S, van den Brink J, and Fulga I C 2018 Phys. Rev. B 98 201114
[38] Ezawa M 2018 Phys. Rev. B 97 155305
[39] Ezawa M 2018 Phys. Rev. Lett. 120 026801
[40] Ezawa M 2018 Phys. Rev. Lett. 121 116801
[41] Kunst F K, van Miert G, and Bergholtz E J 2018 Phys. Rev. B 97 241405
[42] You Y Z, Devakul T, Burnell F J, and Neupert T 2018 Phys. Rev. B 98 235102
[43] Wang Z J, Wieder B J, Li J, Yan B, and Bernevig B A 2019 Phys. Rev. Lett. 123 186401
[44] Kudo K, Yoshida T, and Hatsugai Y 2019 Phys. Rev. Lett. 123 196402
[45] Trifunovic L and Brouwer P W 2019 Phys. Rev. X 9 011012
[46] Yue C M, Xu Y F, Song Z D, Weng H M, Lu Y M, Fang C, and Dai X 2019 Nat. Phys. 15 577
[47] Xu Y F, Song Z D, Wang Z J, Weng H M, and Dai X 2019 Phys. Rev. Lett. 122 256402
[48] Hua C B, Chen R, Zhou B, and Xu D H 2020 Phys. Rev. B 102 241102
[49] Chen R, Chen C Z, Gao J H, Zhou B, and Xu D H 2020 Phys. Rev. Lett. 124 036803
[50] Rasmussen A and Lu Y M 2020 Phys. Rev. B 101 085137
[51] Han B, Zeng J, and Qiao Z 2022 Chin. Phys. Lett. 39 017302
[52] Geier M, Trifunovic L, Hoskam M, and Brouwer P W 2018 Phys. Rev. B 97 205135
[53] Yan Z G, Song F, and Wang Z 2018 Phys. Rev. Lett. 121 096803
[54] Wang Q Y, Liu C C, Lu Y M, and Zhang F 2018 Phys. Rev. Lett. 121 186801
[55] Zhu X Y 2018 Phys. Rev. B 97 205134
[56] Khalaf E 2018 Phys. Rev. B 97 205136
[57] Wang Y X, Lin M, and Hughes T L 2018 Phys. Rev. B 98 165144
[58] Liu T, He J J, and Nori F 2018 Phys. Rev. B 98 245413
[59] Hsu C H, Stano P, Klinovaja J, and Loss D 2018 Phys. Rev. Lett. 121 196801
[60] Shapourian H, Wang Y, and Ryu S 2018 Phys. Rev. B 97 094508
[61] Volpez Y, Loss D, and Klinovaja J 2019 Phys. Rev. Lett. 122 126402
[62] Pan X H, Yang K J, Chen L, Xu G, Liu C X, and Liu X 2019 Phys. Rev. Lett. 123 156801
[63] Franca S, Efremov D V, and Fulga I C 2019 Phys. Rev. B 100 075415
[64] Varjas D, Lau A, Pöyhönen K, Akhmerov A R, Pikulin D I, and Fulga I C 2019 Phys. Rev. Lett. 123 196401
[65] Yan Z G 2019 Phys. Rev. Lett. 123 177001
[66] Laubscher K, Chughtai D, Loss D, and Klinovaja J 2020 Phys. Rev. B 102 195401
[67] Zeng C C, Stanescu T D, Zhang C W, Scarola V W, and Tewari S 2019 Phys. Rev. Lett. 123 060402
[68] Zhu X Y 2019 Phys. Rev. Lett. 122 236401
[69] Bultinck N, Bernevig B A, and Zaletel M P 2019 Phys. Rev. B 99 125149
[70] Zhang R X, Cole W S, and Das S S 2019 Phys. Rev. Lett. 122 187001
[71] Zhang R X, Cole W S, Wu X, and Das S S 2019 Phys. Rev. Lett. 123 167001
[72] Wu Z G, Yan Z B, and Huang W 2019 Phys. Rev. B 99 020508
[73] Ghorashi S A A, Hu X, Hughes T L, and Rossi E 2019 Phys. Rev. B 100 020509
[74] Yan Z B 2019 Phys. Rev. B 100 205406
[75] Liu Z R, Hu L H, Chen C Z, Zhou B, and Xu D H 2021 Phys. Rev. B 103 L201115
[76] Hsu Y T, Cole W S, Zhang R X, and Sau J D 2020 Phys. Rev. Lett. 125 097001
[77] Wu X X, Benalcazar W A, Li Y, Thomale R, Liu C X, and Hu J 2020 Phys. Rev. X 10 041014
[78] Kheirkhah M, Yan Z, Nagai Y, and Marsiglio F 2020 Phys. Rev. Lett. 125 017001
[79] Laubscher K, Loss D, and Klinovaja J 2020 Phys. Rev. Res. 2 013330
[80] Wu Y J, Hou J, Li Y M, Luo X W, Shi X, and Zhang C 2020 Phys. Rev. Lett. 124 227001
[81] Ahn J and Yang B J 2020 Phys. Rev. Res. 2 012060
[82] Roy B 2020 Phys. Rev. B 101 220506
[83] Ghorashi S A A, Hughes T L, and Rossi E 2020 Phys. Rev. Lett. 125 037001
[84] Tiwari A, Jahin A, and Wang Y 2020 Phys. Rev. Res. 2 043300
[85] Fu B, Hu Z A, Li C A, Li J, and Shen S Q 2021 Phys. Rev. B 103 L180504
[86] Kheirkhah M, Nagai Y, Chen C, and Marsiglio F 2020 Phys. Rev. B 101 104502
[87] Ikegaya S, Rui W B, Manske D, and Schnyder A P 2021 Phys. Rev. Res. 3 023007
[88] Roy B and Juričić V 2021 Phys. Rev. B 104 L180503
[89] Qin S S, Fang C, Zhang F C, and Hu J P 2022 Phys. Rev. X 12 011030
[90] Scammell H D, Ingham J, Geier M, and Li T 2022 Phys. Rev. B 105 195149
[91]Shen S Q 2012 Topological Insulators (Berlin: Springer)
[92] Bernevig B A 2013 Topological Insulators and Topological Superconductors (New Jersey: Princeton University Press)
[93] Zhang R X and Das S S 2021 Phys. Rev. Lett. 126 137001
[94] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C, Shen C, Ma X, Chen X et al. 2012 Science 336 52
[95] Xu S Y, Alidoust N, Belopolski I et al. 2014 Nat. Phys. 10 943
[96] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, and Jia J F 2014 Phys. Rev. Lett. 112 217001
[97] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[98] Liu C X and Trauzettel B 2011 Phys. Rev. B 83 220510
[99] Oshima D, Ikegaya S, Schnyder A P, and Tanaka Y 2022 Phys. Rev. Res. 4 L022051
[100] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett. 116 257003
[101] Shang X, Liu H W, and Xia K 2019 Chin. Phys. Lett. 36 107102
[102] Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, and Lu L 2012 Sci. Rep. 2 339
[103] Zhang H, Ma X, Li L, Langenberg D, Zeng C G, and Miao G X 2018 J. Mater. Res. 33 2423
[104] Zhang X, Lyu Z, Yang G, Li B, Hou Y L, Le T, Wang X, Wang A, Sun X, Zhuo E, Liu G, Shen J, Qu F, and Lu L 2022 Chin. Phys. Lett. 39 017401
[105] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, and Xue Q K 2010 Nat. Phys. 6 712
[106] Park M J, Kim Y, Cho G Y, and Lee S 2019 Phys. Rev. Lett. 123 216803
[107] Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, and Nori F 2019 Phys. Rev. Lett. 122 076801
[108]See Supplementary materials for detail discussion about edge theory, phase effect and asymmetric.
[109] Yuan N F Q, Lu Y, He J J, and Law K T 2017 Phys. Rev. B 95 195102
[110]
Related articles from Frontiers Journals
[1] Jiacheng Ye, Jun Li, DingYong Zhong, and Dao-Xin Yao. Possible Superconductivity in Biphenylene[J]. Chin. Phys. Lett., 2023, 40(7): 097403
[2] Ze-Long Wang, Rui-Ying Mao, Da Wang, and Qiang-Hua Wang. Effect of Anisotropic Impurity Scattering in D-Wave Superconductors[J]. Chin. Phys. Lett., 2023, 40(5): 097403
[3] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 097403
[4] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 097403
[5] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 097403
[6] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 097403
[7] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 097403
[8] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 097403
[9] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 097403
[10] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 097403
[11] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 097403
[12] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 097403
[13] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 097403
[14] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 097403
[15] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 097403
Viewed
Full text


Abstract