Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 097402    DOI: 10.1088/0256-307X/40/9/097402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures
Bin Li1*, Yeqian Yang2, Yuxiang Fan1, Cong Zhu2, Shengli Liu1, and Zhixiang Shi3
1School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
3School of Physics, Southeast University, Nanjing 211189, China
Cite this article:   
Bin Li, Yeqian Yang, Yuxiang Fan et al  2023 Chin. Phys. Lett. 40 097402
Download: PDF(9739KB)   PDF(mobile)(9759KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-pressure structural search was performed on the hydrogen-rich compound LuBeH$_8$ at pressures up to 200 GPa. We found an $Fm\bar{3}m$ structure that exhibits stability and superconductivity above 100 GPa. Our phonon dispersion, electronic band structure, and superconductivity analyses in the 100–200 GPa pressure range reveal a strong electron–phonon coupling in LuBeH$_8$, while the superconducting critical temperature $T_{\rm c}$ shows a decreasing trend as the pressure increases, with $T_{\rm c}=255$ K at 200 GPa and maximal $T_{\rm c}=355$ K at 100 GPa. This study demonstrated the room-temperature superconductivity in $Fm\bar{3}m$-LuBeH$_8$, thus enriching the family of ternary hydrides. These findings provide valuable guidance for identifying new high-temperature superconducting hydrides.
Received: 15 May 2023      Published: 24 August 2023
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Kc (Phonons)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  63.20.kd (Phonon-electron interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/097402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/097402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin Li
Yeqian Yang
Yuxiang Fan
Cong Zhu
Shengli Liu
and Zhixiang Shi
[1] van Delft D and Kes P 2010 Phys. Today 63 38
[2] Bardeen J, Cooper L N, and Schrieffer J R 1957 Phys. Rev. 108 1175
[3] Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X, and Zhao J M 2020 Chin. Phys. Lett. 37 097802
[4] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, and Zhao J M 2016 Phys. Rev. Lett. 116 107001
[5] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[6] Eremets M I, Trojan I A, Medvedev S A, Tse J S, and Yao Y 2008 Science 319 1506
[7] Goncharenko I, Eremets M I, Hanfland M, Tse J S, Amboage M, Yao Y, and Trojan I A 2008 Phys. Rev. Lett. 100 045504
[8] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73
[9] Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J, and Cui T 2014 Sci. Rep. 4 6968
[10] Zhang C L, He X, Li Z W, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y et al. 2022 Mater. Today Phys. 27 100826
[11] Wang H, Tse J S, Tanaka K, Iitaka T, and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463
[12] Kong P P, Minkov V S, Kuzovnikov M A et al. 2021 Nat. Commun. 12 5075
[13] Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C, and Ma Y M 2015 Sci. Rep. 5 9948
[14] Geballe Z M, Liu H Y, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M, and Hemley R J 2018 Angew. Chem. 130 696
[15] Drozdov A P, Kong P P, Minkov V S et al. 2019 Nature 569 528
[16] Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[17] Liang X W, Bergara A, Wang L Y, Wen B, Zhao Z S, Zhou X F, He J L, Gao G Y, and Tian Y J 2019 Phys. Rev. B 99 100505
[18] Sun Y, Lv J, Xie Y, Liu H Y, and Ma Y M 2019 Phys. Rev. Lett. 123 097001
[19] Di Cataldo S, Heil C, von der Linden W, and Boeri L 2021 Phys. Rev. B 104 L020511
[20] Liang X W, Bergara A, Wei X D et al. 2021 Phys. Rev. B 104 134501
[21] Semenok D V, Kruglov I A, Savkin I A, Kvashnin A G, and Oganov A R 2020 Curr. Opin. Solid State Mater. Sci. 24 100808
[22] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y M 2017 Phys. Rev. Lett. 119 107001
[23] Dasenbrock-Gammon N, Snider E, McBride R et al. 2023 Nature 615 244
[24] Ming X, Zhang Y J, Zhu X Y, Li Q, He C P, Liu Y C, Huang T H, Liu G, Zheng B, Yang H, Sun J, Xi X X, and Wen H H 2023 Nature 620 72
[25] Xing X Z, Wang C, Yu L C, Xu J, Zhang C T, Zhang M G, Huang S, Zhang X R, Yang B C, Chen X, Zhang Y S, Guo J G, Shi Z X, Ma Y M, Chen C F, and Liu X B 2023 arXiv:2303.17587 [cond-mat.supr-con]
[26] Sun Y, Zhang F, Wu S Q, Antropov V, and Ho K M 2023 Phys. Rev. B 108 L020101
[27] Hilleke K P, Wang X Y, Luo D B, Geng N S, Wang B S, and Zurek E 2023 Phys. Rev. B 108 014511
[28] Ferreira P P, Conway L J, Cucciari A, Cataldo S D, Giannessi F, Kogler E, Eleno L T F, Pickard C J, Heil C, and Boeri L 2023 arXiv:2304.04447 [cond-mat.supr-con]
[29] Wu S X, Li B, Chen Z, Hou Y, Bai Y, Hao X F, Yang Y Q, Liu S L, Cheng J, and Shi Z X 2022 J. Appl. Phys. 131 065901
[30]Li B 2020 CRYSTREE: A Crystal Structure Predictor Based on Machine Learning
[31] Wang J J, Gao H, Han Y, Ding C, Pan S N, Wang Y, Jia Q H, Wang H T, Xing D Y and Sun J 2023 Natl. Sci. Rev. 10 nwad128
[32] Giannozzi P, Baroni S, Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502
[33] Baroni S, De Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[34] Blaha P, Schwarz K, Sorantin P, and Trickey S B 1990 Comput. Phys. Commun. 59 399
[35] Prandini G, Marrazzo A, Castelli I E, Mounet N, Marzari N 2018 npj Comput. Mater. 4 72
[36] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[37] Kawamura M 2019 Comput. Phys. Commun. 239 197
[38] Mitsuaki K, Yoshihiro G, and Shinji T 2014 Phys. Rev. B 89 094515
[39] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[40] Zhang Z H, Cui T, Hutcheon M J, Shipley A M, Song H, Du M Y, Kresin V Z, Duan D F, Pickard C J, and Yao Y S 2022 Phys. Rev. Lett. 128 047001
[41] Lucrezi R, Di Cataldo S, von der L W et al. 2022 npj Comput. Mater. 8 119
[42] Jiang Q W, Zhang Z H, Song H, Ma Y B, Sun Y H, Miao M S, Cui T, Duan D F 2022 Fundamental Res. (in press)
[43] Hou Y, Li B, Bai Y, Hao X F, Yang Y Q, Chi F F, Liu S L, Cheng J, Shi Z X 2022 J. Phys.: Condens. Matter 34 505403
[44] Sun Y, Sun S, Zhong X, Liu H Y 2022 J. Phys.: Condens. Matter 34 505404
[45] Pickard C J, Errea I, and Eremets M I 2020 Annu. Rev. Condens. Matter Phys. 11 57
Related articles from Frontiers Journals
[1] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 097402
[2] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 097402
[3] Yueying Li, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu, and Yuefeng Nie. Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2023, 40(7): 097402
[4] Fankai Xie, Tenglong Lu, Ze Yu, Yaxian Wang, Zongguo Wang, Sheng Meng, and Miao Liu. Lu–H–N Phase Diagram from First-Principles Calculations[J]. Chin. Phys. Lett., 2023, 40(5): 097402
[5] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 097402
[6] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 097402
[7] Bing Huang. What Are the Roles of Hydrogen in Infinite-Layer Nickelates?[J]. Chin. Phys. Lett., 2023, 40(5): 097402
[8] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 097402
[9] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 097402
[10] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 097402
[11] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 097402
[12] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 097402
[13] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 097402
[14] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 097402
[15] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 097402
Viewed
Full text


Abstract