Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 097301    DOI: 10.1088/0256-307X/40/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Gate-Tunable Lifshitz Transition of Fermi Arcs and Its Transport Signatures
Yue Zheng1, Wei Chen1,2*, Xiangang Wan1,2, and D. Y. Xing1,2
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Yue Zheng, Wei Chen, Xiangang Wan et al  2023 Chin. Phys. Lett. 40 097301
Download: PDF(5604KB)   PDF(mobile)(5942KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One hallmark of Weyl semimetals is the emergence of Fermi arcs (FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects that have attracted tremendous research interest. Configurations of FAs are usually thought to be determined fully by the band topology of the bulk states, which seems impossible to manipulate. Here, we show that FAs can be simply modified by a surface gate voltage. Because the penetration length of the surface states depends on the in-plane momentum, a surface gate voltage induces an effective energy dispersion. As a result, a continuous deformation of the surface band can be implemented by tuning the surface gate voltage. In particular, as the saddle point of the surface band meets the Fermi energy, the topological Lifshitz transition takes place for the FAs, during which the Weyl nodes switch their partners connected by the FAs. Accordingly, the magnetic Weyl orbits composed of the FAs on opposite surfaces and chiral Landau bands inside the bulk change their configurations. We show that such an effect can be probed by the transport measurements in a magnetic field, in which the switch-on and switch-off conductances by the surface gate voltage signal the Lifshitz transition. Our work opens a new route for manipulating the FAs by surface gates and exploring novel transport phenomena associated with the topological Lifshitz transition.
Received: 06 June 2023      Published: 23 August 2023
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  71.55.Ak (Metals, semimetals, and alloys)  
  73.25.+i (Surface conductivity and carrier phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/097301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue Zheng
Wei Chen
Xiangang Wan
and D. Y. Xing
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[4] Armitage N, Mele E, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[5] Hasan M Z, Xu S Y, Belopolski I, and Huang S M 2017 Annu. Rev. Condens. Matter Phys. 8 289
[6] Wan X G, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101
[7] Zhang X M, Jin L, Dai X F, and Liu G D 2017 J. Phys. Chem. Lett. 8 4814
[8] Yu R, Fang Z, Dai X, and Weng H 2017 Front. Phys. 12 127202
[9] Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, and Liao Z M 2020 Nat. Commun. 11 1150
[10] Burkov A A, Hook M D, and Balents L 2011 Phys. Rev. B 84 235126
[11] Esin V D, Avakyants A A, Timonina A V, Kolesnikov N N, and Deviatov E V 2022 Chin. Phys. Lett. 39 097303
[12] Chen S J, Lou Z F, Zhou Y X, Chen Q, Xu B J, Wu C X, Du J H, Yang J H, Wang H D, and Fang M H 2021 Chin. Phys. Lett. 38 017202
[13] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, and Lee C C 2015 Science 349 613
[14] Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, and Chang G 2015 Nat. Phys. 11 748
[15] Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, and Chang T R 2015 Sci. Adv. 1 e1501092
[16] Xu N, Weng H, Lv B, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, and Conder K 2016 Nat. Commun. 7 11006
[17] Huang L N, McCormick T M, Ochi M et al. 2016 Nat. Mater. 15 1155
[18] Tamai A, Wu Q, Cucchi I et al. 2016 Phys. Rev. X 6 031021
[19] Deng K, Wan G, Deng P et al. 2016 Nat. Phys. 12 1105
[20] Yang L, Liu Z, Sun Y et al. 2015 Nat. Phys. 11 728
[21] Jiang J, Liu Z, Sun Y et al. 2017 Nat. Commun. 8 13973
[22] Belopolski I, Sanchez D S, Ishida Y et al. 2016 Nat. Commun. 7 13643
[23] Lv B, Xu N, Weng H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, and Bisti F 2015 Nat. Phys. 11 724
[24] Murakami S 2007 New J. Phys. 9 356
[25] Huang S M, Xu S Y, Belopolski I et al. 2015 Nat. Commun. 6 7373
[26] Lv B, Weng H, Fu B et al. 2015 Phys. Rev. X 5 031013
[27] Adler S L 1969 Phys. Rev. 177 2426
[28] Bell J S and Jackiw R 1969 Nuovo Cimento A 60 47
[29] Zyuzin A A and Burkov A A 2012 Phys. Rev. B 86 115133
[30] Zhou J H, Jiang H, Niu Q, and Shi J R 2013 Chin. Phys. Lett. 30 027101
[31] Burkov A 2015 J. Phys.: Condens. Matter 27 113201
[32] Aji V 2012 Phys. Rev. B 85 241101
[33] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[34] Chernodub M N, Cortijo A, Grushin A G, Landsteiner K, and Vozmediano M A H 2014 Phys. Rev. B 89 081407
[35] Ma J and Pesin D A 2015 Phys. Rev. B 92 235205
[36] Zhong S D, Moore J E, and Souza I 2016 Phys. Rev. Lett. 116 077201
[37] Spivak B Z and Andreev A V 2016 Phys. Rev. B 93 085107
[38] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J, and Ong N P 2016 Nat. Mater. 15 1161
[39] Wang Z, Zheng Y, Shen Z, Lu Y, Fang H, Sheng F, Zhou Y, Yang X, Li Y, Feng C, and Xu Z A 2016 Phys. Rev. B 93 121112
[40] Cao W Z, Su Y L, Wang Q, Pei C Y, Gao L L, Zhao Y, Li C H, Yu N, Wang J H, Liu Z K, Chen Y L, Li G, Li J, and Qi Y P 2022 Chin. Phys. Lett. 39 047501
[41] Xu D F, Du Y P, Wang Z, Li Y P, Niu X H, Yao Q, Pavel D, Xu Z A, Wan X G, and Feng D L 2015 Chin. Phys. Lett. 32 107101
[42] Ning Z, Fu B, Shi Q, and Wang X 2020 Chin. Phys. Lett. 37 117201
[43] Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 185 20
[44] Nielsen H B and Ninomiya M 1983 Phys. Lett. B 130 389
[45] Wang S, Lin B C, Wang A Q, Yu D P, and Liao Z M 2017 Adv. Phys.: X 2 518
[46] Lu H Z and Shen S Q 2017 Front. Phys. 12 127201
[47] Zheng H and Hasan M Z 2018 Adv. Phys.: X 3 1466661
[48] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X, and Chen G 2015 Phys. Rev. X 5 031023
[49] Shekhar C, Nayak A K, Sun Y et al. 2015 Nat. Phys. 11 645
[50] Du J H, Wang H D, Chen Q et al. 2016 Sci. Chin. Phys. Mech. & Astron. 59 657406
[51] Zhang C L, Xu S Y, Belopolski I et al. 2016 Nat. Commun. 7 10735
[52] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 arXiv:1903.00509 [cond-mat.mes-hall]
[53] Yang H F, Yang L X, Liu Z K, Sun Y, Chen C, Peng H, Schmidt M, Prabhakaran D, Bernevig B, Felser C, Yan B H, and Chen Y L 2019 Nat. Commun. 10 3478
[54] Ekahana S A, Li Y W, Sun Y, Namiki H, Yang H F, Jiang J, Yang L X, Shi W J, Zhang C F, Pei D, Chen C, Sasagawa T, Felser C, Yan B H, Liu Z K, and Chen Y L 2020 Phys. Rev. B 102 085126
[55]Lifshitz I M 1960 Sov. Phys.-JETP 11 1130
[56] Chen W, Luo K, Li L, and Zilberberg O 2018 Phys. Rev. Lett. 121 166802
[57] Chen G Z, Zilberberg O, and Chen W 2020 Phys. Rev. B 101 125407
[58] Zheng Y, Chen W, and Xing D Y 2021 Phys. Rev. B 104 075420
[59] Chen X R, Chen G, Zheng Y, Chen W, and Xing D Y 2021 Phys. Rev. B 104 205412
[60] Fleck M, Oleś A M, and Hedin L 1997 Phys. Rev. B 56 3159
[61] Rice T and Scott G 1975 Phys. Rev. Lett. 35 120
[62] González J 2008 Phys. Rev. B 78 205431
[63] Potter A C, Kimchi I, and Vishwanath A 2014 Nat. Commun. 5 5161
[64] Groth C W, Wimmer M, Akhmerov A R, and Waintal X 2014 New J. Phys. 16 063065
[65] Chen A Q, Park M J, Gill S T, Xiao Y, Plessis D R I, MacDougall G J, Gilbert M J, and Mason N 2018 Nat. Commun. 9 4334
[66] Ghatak S, Breunig O, Yang F, Wang Z, Taskin A A, and Ando Y 2018 Nano Lett. 18 5124
[67] Sun Y, Wu S C, Ali M N, Felser C, and Yan B 2015 Phys. Rev. B 92 161107
[68] Koepernik K, Kasinathan D, Efremov D V, Khim S, Borisenko S, Büchner B, and van den Brink J 2016 Phys. Rev. B 93 201101
[69] Chang G, Xu S Y, Sanchez D S, Huang S M, Lee C C, Chang T R, Bian G, Zheng H, Belopolski I, Alidoust N, Jeng H T, Bansil A, Lin H, and Hasan M Z 2016 Sci. Adv. 2
[70] Yao M Y, Xu N, Wu Q S, Autès G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J, and Shi M 2019 Phys. Rev. Lett. 122 176402
[71] Borisenko S, Evtushinsky D, Gibson Q et al. 2019 Nat. Commun. 10 3424
[72] Sie E J, Nyby C M, Pemmaraju C et al. 2019 Nature 565 61
[73] Belopolski I, Yu P, Sanchez D S et al. 2017 Nat. Commun. 8 942
[74] Haubold E, Koepernik K, Efremov D, Khim S, Fedorov A, Kushnirenko Y, van den Brink J, Wurmehl S, Büchner B, Kim T K, Hoesch M, Sumida K, Taguchi K, Yoshikawa T, Kimura A, Okuda T, and Borisenko S V 2017 Phys. Rev. B 95 241108
[75] Wang Z J, Gresch D, Soluyanov A A, Xie W W, Kushwaha S, Dai X, Troyer M, Cava R J, and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
[76] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R et al. 2019 Nature 565 331
Related articles from Frontiers Journals
[1] Xinlong Dong, Xin Jia, Zhi Yan, Xuemin Shen, Zeyu Li, Zhenhua Qiao, and Xiaohong Xu. Spin Transport Properties of MnBi$_{2}$Te$_{4}$-Based Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2023, 40(8): 097301
[2] Ming-Li Liu, Dong Pan, Tian Le, Jiang-Bo He, Zhong-Mou Jia, Shang Zhu, Guang Yang, Zhao-Zheng Lyu, Guang-Tong Liu, Jie Shen, Jian-Hua Zhao, Li Lu, and Fan-Ming Qu. Gate-Tunable Negative Differential Conductance in Hybrid Semiconductor–Superconductor Devices[J]. Chin. Phys. Lett., 2023, 40(6): 097301
[3] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 097301
[4] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 097301
[5] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 097301
[6] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 097301
[7] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 097301
[8] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 097301
[9] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 097301
[10] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 097301
[11] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 097301
[12] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 097301
[13] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 097301
[14] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 097301
[15] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 097301
Viewed
Full text


Abstract