CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Atomic Valley Filter Effect Induced by an Individual Flower Defect in Graphene |
Yu Zhang1,2*, Rong Liu1, Lili Zhou1, Can Zhang1, Guoyuan Yang2, Yeliang Wang1, and Lin He3* |
1School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China 2Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China 3Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
|
|
Cite this article: |
Yu Zhang, Rong Liu, Lili Zhou et al 2023 Chin. Phys. Lett. 40 096801 |
|
|
Abstract Owing to the bipartite nature of honeycomb lattice, the electrons in graphene host valley degree of freedom, which gives rise to a rich set of unique physical phenomena including chiral tunneling, Klein paradox, and quantum Hall ferromagnetism. Atomic defects in graphene can efficiently break the local sublattice symmetry, and hence, have significant effects on the valley-based electronic behaviors. Here we demonstrate that an individual flower defect in graphene has the ability of valley filter at the atomic scale. With the combination of scanning tunneling microscopy and Landau level measurements, we observe two valley-polarized density-of-states peaks near the outside of the flower defects, implying the symmetry breaking of the $K$ and $K'$ valleys in graphene. Moreover, the electrons in the $K$ valley can highly penetrate inside the flower defects. In contrast, the electrons in the $K'$ valley cannot directly penetrate, instead, they should be assisted by the valley switch from the $K'$ to K. Our results demonstrate that an individual flower defect in graphene can be regarded as a nanoscale valley filter, providing insight into the practical valleytronics.
|
|
Received: 22 June 2023
Editors' Suggestion
Published: 23 August 2023
|
|
PACS: |
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.35.Dv
|
(Composition, segregation; defects and impurities)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
|
|
|
[1] | Castro N A H, Guinea F, Peres N M R et al. 2009 Rev. Mod. Phys. 81 109 |
[2] | Zhang Y B, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201 |
[3] | Veyrat L, Déprez C, Coissard A et al. 2020 Science 367 781 |
[4] | Zhang Y, Guo Q, Li S, and He L 2020 Phys. Rev. B 101 155424 |
[5] | Telychko M, Noori K, Biswas H et al. 2022 Nano Lett. 22 8422 |
[6] | Rutter G M, Crain J N, Guisinger N P et al. 2007 Science 317 219 |
[7] | Grantab R, Shenoy V B, and Ruoff R S 2010 Science 330 946 |
[8] | Yazyev O V and Louie S G 2010 Nat. Mater. 9 806 |
[9] | Huang P Y, Ruiz-Vargas C S, van der Zande A M et al. 2011 Nature 469 389 |
[10] | Wei Y J, Wu J T, Yin H Q et al. 2012 Nat. Mater. 11 759 |
[11] | Lu J, Bao Y, Su C L et al. 2013 ACS Nano 7 8350 |
[12] | Cockayne E, Rutter G M, Guisinger N P et al. 2011 Phys. Rev. B 83 195425 |
[13] | Cockayne E 2012 Phys. Rev. B 85 125409 |
[14] | Zhang Y, Qiao J, Yin L, and He L 2018 Phys. Rev. B 98 045413 |
[15] | Rasool H I, Song E B, Mecklenburg M et al. 2011 J. Am. Chem. Soc. 133 12536 |
[16] | Mallet P, Brihuega I, Bose S et al. 2012 Phys. Rev. B 86 045444 |
[17] | Tesch J, Leicht P, Blumenschein F et al. 2017 Phys. Rev. B 95 075429 |
[18] | Dutreix C, González-Herrero H, Brihuega I et al. 2019 Nature 574 219 |
[19] | Zhang Y, Su Y, and He L 2020 Phys. Rev. Lett. 125 116804 |
[20] | Zhang Y, Su Y, and He L 2021 Nano Lett. 21 2526 |
[21] | Zhang Y, Gao F, Gao S et al. 2022 Phys. Rev. Lett. 129 096402 |
[22] | Yazyev O V and Chen Y P 2014 Nat. Nanotechnol. 9 755 |
[23] | Yan H, Liu C, Bai K et al. 2013 Appl. Phys. Lett. 103 143120 |
[24] | Miller D L, Kubista K D, Rutter G M et al. 2009 Science 324 924 |
[25] | Song Y J, Otte A F, Kuk Y et al. 2010 Nature 467 185 |
[26] | Yin L, Li S, Qiao J, Nie J, and He L 2015 Phys. Rev. B 91 115405 |
[27] | Coissard A, Wander D, Vignaud H et al. 2022 Nature 605 51 |
[28] | Liu X M, Farahi G, Chiu C L et al. 2022 Science 375 321 |
[29] | Li G H, Luican A, and Andrei E Y 2009 Phys. Rev. Lett. 102 176804 |
[30] | Xiao D, Yao W, and Niu Q 2007 Phys. Rev. Lett. 99 236809 |
[31] | Goerbig M O 2011 Rev. Mod. Phys. 83 1193 |
[32] | Young A F, Dean C R, Wang L et al. 2012 Nat. Phys. 8 550 |
[33] | Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806 |
[34] | Tapar S and Muralidharan B 2023 Phys. Rev. B 107 205415 |
[35] | Rycerz A, Tworzydlo J, and Beenakker C W J 2007 Nat. Phys. 3 172 |
[36] | Zhai F, Zhao X, Chang K, and Xu H Q 2010 Phys. Rev. B 82 115442 |
[37] | Zhai F, Ma Y, and Zhang Y 2011 J. Phys.: Condens. Matter 23 385302 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|