Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 096801    DOI: 10.1088/0256-307X/40/9/096801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Atomic Valley Filter Effect Induced by an Individual Flower Defect in Graphene
Yu Zhang1,2*, Rong Liu1, Lili Zhou1, Can Zhang1, Guoyuan Yang2, Yeliang Wang1, and Lin He3*
1School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
2Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
3Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Yu Zhang, Rong Liu, Lili Zhou et al  2023 Chin. Phys. Lett. 40 096801
Download: PDF(18184KB)   PDF(mobile)(18194KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Owing to the bipartite nature of honeycomb lattice, the electrons in graphene host valley degree of freedom, which gives rise to a rich set of unique physical phenomena including chiral tunneling, Klein paradox, and quantum Hall ferromagnetism. Atomic defects in graphene can efficiently break the local sublattice symmetry, and hence, have significant effects on the valley-based electronic behaviors. Here we demonstrate that an individual flower defect in graphene has the ability of valley filter at the atomic scale. With the combination of scanning tunneling microscopy and Landau level measurements, we observe two valley-polarized density-of-states peaks near the outside of the flower defects, implying the symmetry breaking of the $K$ and $K'$ valleys in graphene. Moreover, the electrons in the $K$ valley can highly penetrate inside the flower defects. In contrast, the electrons in the $K'$ valley cannot directly penetrate, instead, they should be assisted by the valley switch from the $K'$ to K. Our results demonstrate that an individual flower defect in graphene can be regarded as a nanoscale valley filter, providing insight into the practical valleytronics.
Received: 22 June 2023      Editors' Suggestion Published: 23 August 2023
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.35.Dv (Composition, segregation; defects and impurities)  
  73.22.Pr (Electronic structure of graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/096801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/096801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Zhang
Rong Liu
Lili Zhou
Can Zhang
Guoyuan Yang
Yeliang Wang
and Lin He
[1] Castro N A H, Guinea F, Peres N M R et al. 2009 Rev. Mod. Phys. 81 109
[2] Zhang Y B, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201
[3] Veyrat L, Déprez C, Coissard A et al. 2020 Science 367 781
[4] Zhang Y, Guo Q, Li S, and He L 2020 Phys. Rev. B 101 155424
[5] Telychko M, Noori K, Biswas H et al. 2022 Nano Lett. 22 8422
[6] Rutter G M, Crain J N, Guisinger N P et al. 2007 Science 317 219
[7] Grantab R, Shenoy V B, and Ruoff R S 2010 Science 330 946
[8] Yazyev O V and Louie S G 2010 Nat. Mater. 9 806
[9] Huang P Y, Ruiz-Vargas C S, van der Zande A M et al. 2011 Nature 469 389
[10] Wei Y J, Wu J T, Yin H Q et al. 2012 Nat. Mater. 11 759
[11] Lu J, Bao Y, Su C L et al. 2013 ACS Nano 7 8350
[12] Cockayne E, Rutter G M, Guisinger N P et al. 2011 Phys. Rev. B 83 195425
[13] Cockayne E 2012 Phys. Rev. B 85 125409
[14] Zhang Y, Qiao J, Yin L, and He L 2018 Phys. Rev. B 98 045413
[15] Rasool H I, Song E B, Mecklenburg M et al. 2011 J. Am. Chem. Soc. 133 12536
[16] Mallet P, Brihuega I, Bose S et al. 2012 Phys. Rev. B 86 045444
[17] Tesch J, Leicht P, Blumenschein F et al. 2017 Phys. Rev. B 95 075429
[18] Dutreix C, González-Herrero H, Brihuega I et al. 2019 Nature 574 219
[19] Zhang Y, Su Y, and He L 2020 Phys. Rev. Lett. 125 116804
[20] Zhang Y, Su Y, and He L 2021 Nano Lett. 21 2526
[21] Zhang Y, Gao F, Gao S et al. 2022 Phys. Rev. Lett. 129 096402
[22] Yazyev O V and Chen Y P 2014 Nat. Nanotechnol. 9 755
[23] Yan H, Liu C, Bai K et al. 2013 Appl. Phys. Lett. 103 143120
[24] Miller D L, Kubista K D, Rutter G M et al. 2009 Science 324 924
[25] Song Y J, Otte A F, Kuk Y et al. 2010 Nature 467 185
[26] Yin L, Li S, Qiao J, Nie J, and He L 2015 Phys. Rev. B 91 115405
[27] Coissard A, Wander D, Vignaud H et al. 2022 Nature 605 51
[28] Liu X M, Farahi G, Chiu C L et al. 2022 Science 375 321
[29] Li G H, Luican A, and Andrei E Y 2009 Phys. Rev. Lett. 102 176804
[30] Xiao D, Yao W, and Niu Q 2007 Phys. Rev. Lett. 99 236809
[31] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[32] Young A F, Dean C R, Wang L et al. 2012 Nat. Phys. 8 550
[33] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[34] Tapar S and Muralidharan B 2023 Phys. Rev. B 107 205415
[35] Rycerz A, Tworzydlo J, and Beenakker C W J 2007 Nat. Phys. 3 172
[36] Zhai F, Zhao X, Chang K, and Xu H Q 2010 Phys. Rev. B 82 115442
[37] Zhai F, Ma Y, and Zhang Y 2011 J. Phys.: Condens. Matter 23 385302
Related articles from Frontiers Journals
[1] Li Zhu, Wei-Min Zhao, Zhen-Yu Jia, Huiping Li, Xuedong Xie, Qi-Yuan Li, Qi-Wei Wang, Li-Guo Dou, Ju-Gang Hu, Yi Zhang, Wenguang Zhu, Shun-Li Yu, Jian-Xin Li, and Shao-Chun Li. Electron-Exciton Coupling in 1T-TiSe$_{2}$ Bilayer[J]. Chin. Phys. Lett., 2023, 40(5): 096801
[2] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 096801
[3] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 096801
[4] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 096801
[5] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 096801
[6] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 096801
[7] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 096801
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 096801
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 096801
[10] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 096801
[11] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 096801
[12] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 096801
[13] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 096801
[14] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 096801
[15] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 096801
Viewed
Full text


Abstract