Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 096301    DOI: 10.1088/0256-307X/40/9/096301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Phonon Focusing Effect in an Atomic Level Triangular Structure
Jian-Hui Jiang, Shuang Lu, and Jie Chen*
Center for Phononics and Thermal Energy Science, China–EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Cite this article:   
Jian-Hui Jiang, Shuang Lu, and Jie Chen 2023 Chin. Phys. Lett. 40 096301
Download: PDF(4820KB)   PDF(mobile)(5135KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The rise of artificial microstructures has made it possible to modulate propagation of various kinds of waves, such as light, sound and heat. Among them, the focusing effect is a modulation function of particular interest. We propose an atomic level triangular structure to realize the phonon focusing effect in single-layer graphene. In the positive incident direction, our phonon wave packet simulation results confirm that multiple features related to the phonon focusing effect can be controlled by adjusting the height of the triangular structure. More interestingly, a completed different focusing pattern and an enhanced energy transmission coefficient are found in the reverse incident direction. The detailed mode conversion physics is discussed based on the Fourier transform analysis on the spatial distribution of the phonon wave packet. Our study provides physical insights to achieving phonon focusing effect by designing atomic level microstructures.
Received: 25 June 2023      Editors' Suggestion Published: 31 August 2023
PACS:  63.22.Rc (Phonons in graphene)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/096301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/096301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Hui Jiang
Shuang Lu
and Jie Chen
[1] Chen A L, Wang Y S, Wang Y F, Zhou H T, and Yuan S M 2022 Appl. Mech. Rev. 74 020801
[2] Chen J, He J, Pan D, Wang X T, Yang N, Zhu J J, Yang S A, and Zhang G 2022 Sci. Chin. Phys. Mech. & Astron. 65 117002
[3] Zhang Z W, Guo Y Y, Marc B, Chen J, Nomura M, and Volz S 2021 APL Mater. 9 081102
[4] Gao F, Xie J L, Peng Y C, Yan B, Liu E, Peng P, Li H, Jiang J P, and Liu J J 2020 Europhys. Lett. 132 38003
[5] Song X P, Chen T N, and Li R 2021 J. Appl. Phys. 130 085101
[6] Cen Y, Xie J L, and Liu J J 2019 Chin. Opt. Lett. 17 080501
[7] Feng Z F, Zhang X D, Wang Y Q, Li Z Y, Cheng B Y, and Zhang D Z 2005 Phys. Rev. Lett. 94 247402
[8] Chen J H, Qian J, Guan Y J, Ge Y, Yuan S Q, Sun H X, Lai Y, and Liu X J 2021 Front. Mater. 8 766491
[9] Ge Y, Sun H X, Yuan S Q, and Xia J P 2017 Appl. Phys. A 123 328
[10] Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A, and Jing Y 2017 Phys. Rev. Lett. 119 035501
[11] Song A L, Chen T N, Wang X P, and Xi Y H 2017 Phys. Lett. A 381 2283
[12] Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, and Cheng J C 2016 Appl. Phys. Lett. 108 073501
[13] Yamamoto N and Nomura H 2021 Jpn. J. Appl. Phys. 60 SDDB05
[14] Zhang P, Li T C, Zhu J, Zhu X F, Yang S, Wang Y, Yin X B, and Zhang X 2014 Nat. Commun. 5 4316
[15] Bückmann T, Thiel M, Kadic M, Schittny R, and Wegener M 2014 Nat. Commun. 5 4130
[16] Cummer S A, Christensen J, and Alù A 2016 Nat. Rev. Mater. 1 16001
[17] Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[18] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, and Li Y 2019 J. Acoust. Soc. Am. 145 254
[19] Fleury R, Sounas D, and Alu A 2015 Nat. Commun. 6 5905
[20] Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, and Sheng P 2012 Nat. Commun. 3 756
[21] Maldovan M 2013 Nature 503 209
[22] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, and Li B W 2018 J. Phys. Chem. Lett. 9 3959
[23] Yang L N, Chen J, Yang N, and Li B W 2015 Int. J. Heat Mass Transfer 91 428
[24] Ma J Q, Wang S E, Wan X, Ma D K, Xiao Y, Hao Q, and Yang N 2022 Nanoscale 14 17072
[25] Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J, and Chen J 2021 APL Mater. 9 040703
[26] Lei M, Jiang C R, Yang F B, Wang J, and Huang J P 2023 Int. J. Heat Mass Transfer 207 124033
[27] Zhang Z R, Yang F B, and Huang J P 2023 Phys. Rev. Appl. 19 024009
[28] Zhang C, Ma D K, Shang M Y, Wan X, Lü J T, Guo Z L, Li B W, and Yang N 2022 Mater. Today Phys. 22 100605
[29] Xu L J, Liu J R, Jin P, Xu G Q, Li J X, Ouyang X P, Li Y, Qiu C W, and Huang J P 2023 Natl. Sci. Rev. 10 nwac159
[30] Ji R C, Peng G L, Xu Z W, Yang N, and Hao Q 2022 Acta Phys. Sin. 71 168401 (in Chinese)
[31] Jin P, Liu J R, Xu L J, Wang J, Ouyang X P, Jiang J H, and Huang J P 2023 Proc. Natl. Acad. Sci. USA 120 e2217068120
[32] Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, and Volz S 2021 Phys. Rev. B 103 184307
[33] Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, and Volz S 2022 Phys. Rev. Lett. 128 015901
[34] Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, and Volz S 2022 npj Comput. Mater. 8 96
[35] Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, and Yang N 2023 Acta Phys. Sin. 72 034401 (in Chinese)
[36] Lu S, Ouyang Y L, Yu C Q, Jiang P F, He J, and Chen J 2021 J. Appl. Phys. 129 225106
[37] Jiang P F, Hu S Q, Ouyang Y L, Ren W J, Yu C Q, Zhang Z W, and Chen J 2020 J. Appl. Phys. 127 235101
[38] Pan D K, Zong Z C, and Yang N 2022 Acta Phys. Sin. 71 086302 (in Chinese)
[39] Chen J, Zhang G, and Li B W 2011 J. Chem. Phys. 135 104508
[40] An M, Chen D S, Ma W G, Hu S Q, and Zhang X 2021 Int. J. Heat Mass Transfer 178 121630
[41] Liu B, Guo Y Y, Khvesyuk V I, Barinov A A, and Wang M R 2022 Nano Res. 15 9492
[42] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, and Chen J 2019 Nanoscale 11 11839
[43] Haku S, Moriya H, An H Y, Musha A, and Ando K 2021 Phys. Rev. B 104 174403
[44] Chen J F, Xie J L, and Liu J J 2021 Results Phys. 30 104840
[45] Gao S L, Zeng Q L, Gong M Y, Lan J, and Liu X 2022 Micromachines 14 12
[46] Ulug B, Kuruoğlu F, Yalçın Y, Erol A, Sarcan F, Şahin A, and Cicek A 2022 J. Phys. D 55 225303
[47] Cheng P S, Shulumba N, and Minnich A J 2019 Phys. Rev. B 100 094306
[48] Hurley D C, Wolfe J P, and McCarthy K A 1986 Phys. Rev. B 33 4189
[49] Camley R E and Maradudin A A 1983 Phys. Rev. B 27 1959
[50] Taylor B, Maris H J, and Elbaum C 1969 Phys. Rev. Lett. 23 416
[51] Every A G 1992 Phys. Rev. B 45 5270
[52] Tamura S 1983 Phys. Rev. B 28 897
[53] Yang J K, Shen M, Yang Y, Evans W J, Wei Z Y, Chen W Y, Zinn A A, Chen Y F, Prasher R, Xu T T, Keblinski P, and Li D Y 2014 Phys. Rev. Lett. 112 205901
[54] Schelling P K, Phillpot S R, and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[55] Plimpton S 1995 J. Comput. Phys. 117 1
[56] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[57] Zhang Z W, Ouyang Y L, Chen J, and Volz S 2020 Chin. Phys. B 29 124402
Related articles from Frontiers Journals
[1] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 096301
[2] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 096301
[3] H. Tashakori, B. Khoshnevisan, F. Kanjouri. Ab-Initio Study of Cobalt Impurity Effects on Phonon Spectra, Mechanical and Thermal Properties of Single Wall Carbon Nanotube (5,0)[J]. Chin. Phys. Lett., 2014, 31(04): 096301
[4] Taher Ghrib, Rawdha Brini, Amel Lafi Al-otaibi, Muneera Abdullah Al-messiere. Thermal and Structural Study of Mono- and Multi-Layered Thin Films Composed of CuAlS2 Chalcogenide[J]. Chin. Phys. Lett., 2013, 30(10): 096301
Viewed
Full text


Abstract