Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 093201    DOI: 10.1088/0256-307X/40/9/093201
ATOMIC AND MOLECULAR PHYSICS |
Resonant Auger Scattering by Attosecond X-Ray Pulses
Quan-Wei Nan1†, Chao Wang1†, Xin-Yue Yu1†, Xi Zhao1, Yongjun Cheng1, Maomao Gong1, Xiao-Jing Liu2, Victor Kimberg3, and Song-Bin Zhang1*
1School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
2School Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3International Research Center of Spectroscopy and Quantum Chemistry–IRC SQC, Siberian Federal University, Krasnoyarsk 660041, Russia
Cite this article:   
Quan-Wei Nan, Chao Wang, Xin-Yue Yu et al  2023 Chin. Phys. Lett. 40 093201
Download: PDF(1256KB)   PDF(mobile)(1271KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As x-ray probe pulses approach the subfemtosecond range, conventional x-ray photoelectron spectroscopy (XPS) is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening. However, in the case of resonant x-ray photoemission, also known as resonant Auger scattering (RAS), the spectroscopic technique maintains spectral resolution when an x-ray pulse is precisely tuned to a core-excited state. We present theoretical simulations of XPS and RAS spectra on a showcased CO molecule using ultrashort x-ray pulses, revealing significantly enhanced resolution in the RAS spectra compared to XPS, even in the sub-femtosecond regime. These findings provide a novel perspective on potential utilization of attosecond x-ray pulses, capitalizing on the well-established advantages of detecting electron signals for tracking electronic and molecular dynamics.
Received: 07 July 2023      Editors' Suggestion Published: 23 August 2023
PACS:  32.80.Hd (Auger effect)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  32.30.Rj (X-ray spectra)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/093201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/093201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Quan-Wei Nan
Chao Wang
Xin-Yue Yu
Xi Zhao
Yongjun Cheng
Maomao Gong
Xiao-Jing Liu
Victor Kimberg
and Song-Bin Zhang
[1]Turner D W 1970 Philos. Trans. R. Soc. London. Ser. A 268 7
[2]Chastain J and King J R C 1992 Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation)
[3]Hüfner S 2013 Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer)
[4] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117
[5] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, and Agostini P 2001 Science 292 1689
[6] McNeil B W J and Thompson N R 2010 Nat. Photon. 4 814
[7] Amann J, Berg W, Blank V et al. 2012 Nat. Photon. 6 693
[8] Allaria E, Appio R, Badano L et al. 2012 Nat. Photon. 6 699
[9] Inhester L, Li Z, Zhu X et al. 2019 J. Phys. Chem. Lett. 10 6536
[10] Pathak S, Ibele L M, Boll R et al. 2020 Nat. Chem. 12 795
[11] LaForge A C, Michiels R, Ovcharenko Y et al. 2021 Phys. Rev. X 11 021011
[12] Blanchet V, Zgierski M Z, Seideman T, and Stolow A 1999 Nature 401 52
[13] Zewail A H 2000 J. Phys. Chem. A 104 5660
[14] Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255
[15] Stolow A, Bragg A E, and Neumark D M 2004 Annu. Rev. Phys. Chem. 104 1719
[16] Wu G R, Hockett P, and Stolow A 2011 Phys. Chem. Chem. Phys. 13 18447
[17] Sansone G, Benedetti E, Calegari F et al. 2006 Science 314 443
[18] Chini M, Zhao K, and Chang Z 2014 Nat. Photon. 8 178
[19] Hartmann N, Hartmann G, Heider R et al. 2018 Nat. Photon. 12 215
[20] Duris J, Li S, Driver T et al. 2020 Nat. Photon. 14 30
[21] Maroju P K, Grazioli C, Fraia M D et al. 2020 Nature 578 386
[22] Kaldun A, Blättermann A, Stooß V et al. 2016 Science 354 738
[23] Kobayashi Y, Chang K F, Zeng T, Neumark D M, and Leone S R 2019 Science 365 79
[24] Peng L Y, Jiang W C, Geng J W, Xiong W H, and Gong Q 2015 Phys. Rep. 575 1
[25] Wang C, Gong M, Cheng Y et al. 2023 J. Phys. Chem. Lett. 14 5475
[26] Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, and Corkum P B 2002 Phys. Rev. Lett. 88 173903
[27] Goulielmakis E, Yakovlev V S, Cavalieri A L et al. 2007 Science 317 769
[28] Gel'mukhanov F, Odelius M, Polyutov S P, Föhlisch A, and Kimberg V 2021 Rev. Mod. Phys. 93 035001
[29] Pahl E, Meyer H D, and Cederbaum L 1996 Z. Phys. D: At. Mol. Clusters 38 215
[30] Demekhin P V, Chiang Y C, and Cederbaum L S 2011 Phys. Rev. A 84 033417
[31] Zhang S B and Rohringer N 2014 Phys. Rev. A 89 013407
[32] Zhang S B and Rohringer N 2015 Phys. Rev. A 92 043420
[33] Zhang S B, Kimberg V, and Rohringer N 2016 Phys. Rev. A 94 063413
[34] Zhang S B, Xie X T, and Wang J G 2017 Phys. Rev. A 96 053420
[35] Bian Q, Wu Y, Wang J G, and Zhang S B 2019 Phys. Rev. A 99 033404
[36] Shi X, Wu Y, Wang J G, Kimberg V, and Zhang S B 2020 Phys. Rev. A 101 023401
[37] Zhu Y P, Liu Y R, Zhao X, Kimberg V, and Zhang S B 2021 Chin. Phys. Lett. 38 053201
[38] Zhu Y P, Zhao X, Liu X J, Kimberg V, and Zhang S B 2022 Phys. Rev. A 106 023105
[39] Demekhin P V and Cederbaum L S 2011 Phys. Rev. A 83 023422
[40] Cederbaum L S and Domcke W 1981 J. Phys. B 14 4665
[41] Domcke W 1991 Phys. Rep. 208 97
[42] Kukk E, Bozek J D, Cheng W T, Fink R F, Wills A A, and Berrah N 1999 J. Chem. Phys. 111 9642
[43] Skytt P, Glans P, Gunnelin K et al. 1997 Phys. Rev. A 55 134
[44] Beck M H, Jäckle A, Worth G A, and Meyer H D 2000 Phys. Rep. 324 1
[45]Worth G A, Beck M H, Jäckle A, Vendrell O and Meyer H D 2000 The MCTDH Package, Version 8.2. Meyer H D, Version 8.3 (2002), Version 8.4 (2007). Vendrell O and Meyer H D Version 8.5 (2013). Version 8.5 contains the ML-MCTDH algorithm. Current versions: 8.4.18 and 8.5.11 (2019). Used version: exchange with “Used version”. See http://mctdh.uni-hd.de/
[46] Osborne S J, Ausmees A, Svensson S, Kivimäki A, Sairanen O P, de Brito A N, Aksela H, and Aksela S 1995 J. Chem. Phys. 102 7317
[47] Ignatova N, da Cruz V V, Couto R C, Ertan E, Odelius M, Ågren H, Guimarães F F, Zimin A, Polyutov S P, Gel'mukhanov F, and Kimberg V 2017 Phys. Rev. A 95 042502
[48] Liu J C, Savchenko V, Kimberg V, Odelius M, and Gel'mukhanov F 2021 Phys. Rev. A 103 022829
[49] Carravetta V, Gel'mukhanov F K, Ågren H, Sundin S, Osborne S J, de Naves B A, Björneholm O, Ausmees A, and Svensson S 1997 Phys. Rev. A 56 4665
[50]Shankar R 2012 Principles of Quantum Mechanics (Berlin: Springer Science & Business Media)
[51] Gel'Mukhanov F K, Mazalov L N, and Kondratenko A V 1977 Chem. Phys. Lett. 46 133
[52] Correia N, Flores-Riveros A, Ågren H, Helenelund K, Asplund L, and Gelius U 1985 J. Chem. Phys. 83 2035
Related articles from Frontiers Journals
[1] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 093201
[2] Zhenqi Liu, Qing Liu, Yulong Ma, Fuyang Zhou, and Yizhi Qu. Multiple Auger Decay Following Xe$^{+}$ (4$p_{3/2}^{-1}$) Ionization[J]. Chin. Phys. Lett., 2021, 38(2): 093201
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 093201
[4] CAO Xiang-Nian, SU Mao-Gen, SUN Dui-Xiong, FU Yan-Biao, DONG Chen-Zhong. Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions[J]. Chin. Phys. Lett., 2012, 29(11): 093201
[5] WANG Xiang-Li, DONG Chen-Zhong, XIE Lu-You, SHI Ying-Long, SABER Ismail Abdalla, ZHOU Wei-Dong. The Radiative and Auger Decay Properties of K-Shell Ionized Np Ions[J]. Chin. Phys. Lett., 2012, 29(10): 093201
[6] DING Xiao-Bin, DONG Chen-Zhong, Gerard O'Sullivan. Shake-up Processes in the 3d Photoionization of Sr I and the Subsequent Auger Decay[J]. Chin. Phys. Lett., 2012, 29(6): 093201
[7] WANG Xiang-Li,DONG Chen-Zhong**,SU Mao-Gen,KOIKE Fumihiro. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr[J]. Chin. Phys. Lett., 2012, 29(4): 093201
[8] Mukhtar Ahmed Rana* . Radiation-Induced Nano-Explosions at the Solid Surface: Near Surface Radiation Damage in CR-39 Polymer[J]. Chin. Phys. Lett., 2011, 28(8): 093201
[9] REN Lin-Mao, WANG You-Yan, LI Dong-Dong, YUAN Zhen-Sheng, ZHU Lin-Fan** . Inner-Shell Excitations of 2p Electrons of Argon Investigated by Fast Electron Impact with High Resolution[J]. Chin. Phys. Lett., 2011, 28(5): 093201
[10] YANG Ning-Xuan, DONG Chen-Zhong, JIANG Jun. Theoretical Study on Inner Shell Electron Impact Excitation of Lithium[J]. Chin. Phys. Lett., 2009, 26(6): 093201
[11] Mukhtar Ahmed Rana. Etchability of Latent Fission Fragment Tracks in CR-39[J]. Chin. Phys. Lett., 2007, 24(11): 093201
[12] ZHANG Deng-Hong, DONG Chen-Zhong, Fumihiro Koike. Theoretical Investigation of Decay Process in a Doubly Excited 2s2 1S0 State of He-Like Ions[J]. Chin. Phys. Lett., 2006, 23(8): 093201
[13] Mukhtar A. Rana. Formation of Charged Particle Tracks in Solids[J]. Chin. Phys. Lett., 2006, 23(6): 093201
[14] LIANG Gui-Yun, ZHAO Gang. Photoionization of Ge13 in the Inner-Shell 2p Excitation Energy Region[J]. Chin. Phys. Lett., 2006, 23(1): 093201
[15] YANG Zhi-Hu, DU Shu-Bin, CHANG Hong-Wei, ZHANG Xiao-An, SU Hong, ZHANG Yan-Ping, SONG Zhang-Yong. Oscillator Strength for n=2 Transitions in Highly Ionized Sulfur[J]. Chin. Phys. Lett., 2005, 22(5): 093201
Viewed
Full text


Abstract