Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 087402    DOI: 10.1088/0256-307X/40/8/087402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coexistence of Unidirectional Charge Density Waves in LaTe$_{3}$
Guo-Yu Xian1,2†, Pei-Jie Jiang2,1†, Yu-Hui Li1,2†, Xing-Wei Shi2,1, Guang-Yuan Han1,2, Hai-Tao Yang1,2,3, Yu-Yang Zhang2,1*, Xiao Lin2,1*, and Hong-Jun Gao1,2,3
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Guo-Yu Xian, Pei-Jie Jiang, Yu-Hui Li et al  2023 Chin. Phys. Lett. 40 087402
Download: PDF(8734KB)   PDF(mobile)(8746KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The classic rare-earth tritelluride provides an ideal platform to study the strong correlation state owing to its stable structures and abundance of orders. Here we report the observation of an undiscovered charge density wave (CDW) in LaTe$_{3}$ under 4.2 K, the transition temperature of the CDW states is fitted to be 35 K, and confirmed by the evanishment of this CDW at 77 K via using temperature-dependent scanning tunneling microscope/spectroscopy. The coexistence of these CDWs is confirmed by the atomic resolution and beating pattern simulation. It is the first time to observe the coexistence of unidirectional charge density waves system, providing a new platform to understand the competition and evolution between strong correlation states, and get a deeper sight into the phase lag between different order parameters.
Received: 30 May 2023      Published: 11 August 2023
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.25.Fy  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.62.-c (Transition temperature variations, phase diagrams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/087402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/087402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo-Yu Xian
Pei-Jie Jiang
Yu-Hui Li
Xing-Wei Shi
Guang-Yuan Han
Hai-Tao Yang
Yu-Yang Zhang
Xiao Lin
and Hong-Jun Gao
[1]Ru N 2008 Charge Density Wave Formation in Rare Earth Tritelluride PhD Dissertation (Stanford University)
[2] Ru N, Borzi R A, Rost A, Mackenzie A P, Laverock J, Dugdale S B, and Fisher I R 2008 Phys. Rev. B 78 045123
[3] Ru N and Fisher I R 2006 Phys. Rev. B 73 033101
[4] Yang X, Xian J J, Li G, Nagaosa N, Zhang W H, Qin L, Zhang Z M, Lü J T, and Fu Y S 2020 Phys. Rev. X 10 031061
[5] Feng H F, Xu Z F, Zhuang J C, Wang L, Liu Y N, Xu X, Song L, Hao W C, and Du Y 2019 Adv. Funct. Mater. 29 1900367
[6] Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N, and Fisher I R 2008 Phys. Rev. B 77 235104
[7] DiMasi E, Aronson M C, Mansfield J F, Foran B, and Lee S 1995 Phys. Rev. B 52 14516
[8] Lavagnini M, Baldini M, Sacchetti A, Di Castro D, Delley B, Monnier R, Chu J H, Ru N, Fisher I R, Postorino P, and Degiorgi L 2008 Phys. Rev. B 78 201101
[9] Ru N, Condron C L, Margulis G Y, Shin K Y, Laverock J, Dugdale S B, Toney M F, and Fisher I R 2008 Phys. Rev. B 77 035114
[10] Yao H, Robertson J A, Kim E A, and Kivelson S A 2006 Phys. Rev. B 74 245126
[11] Banerjee A, Feng Y, Silevitch D M, Wang J, Lang J C, Kuo H H, Fisher I R, and Rosenbaum T F 2013 Phys. Rev. B 87 155131
[12] Deguchi K, Okada T, Chen G F, Ban S, Aso N, and Sato N K 2009 J. Phys.: Conf. Ser. 150 042023
[13] Hu B F, Cheng B, Yuan R H, Dong T, and Wang N L 2014 Phys. Rev. B 90 085105
[14] Chillal S, Schierle E, Weschke E, Yokaichiya F, Hoffmann J U, Volkova O S, Vasiliev A N, Sinchenko A A, Lejay P, Hadj-Azzem A, Monceau P, and Lake B 2020 Phys. Rev. B 102 241110
[15] Walmsley P, Aeschlimann S, Straquadine J A W, Giraldo-Gallo P, Riggs S C, Chan M K, McDonald R D, and Fisher I R 2020 Phys. Rev. B 102 045150
[16] Sarkar S, Singh V K, Sadhukhan P, Pariari A, Roy S, Mandal P, and Barman S R 2020 AIP Conf. Proc. 2220 100005
[17] Kogar A, Zong A, Dolgirev P E, Shen X, Straquadine J, Bie Y Q, Wang X, Rohwer T, Tung I C, Yang Y, Li R, Yang J, Weathersby S, Park S, Kozina M E, Sie E J, Wen H, Jarillo-Herrero P, Fisher I R, Wang X, and Gedik N 2020 Nat. Phys. 16 159
[18] Wang Y P, Petrides I, McNamara G, Hosen M M, Lei S, Wu Y C, Hart J L, Lv H, Yan J, Xiao D, Cha J J, Narang P, Schoop L M, and Burch K S 2022 Nature 606 896
[19] Pariari A, Koley S, Roy S, Singha R, Laad M S, Taraphder A, and Mandal P 2021 Phys. Rev. B 104 155147
[20]Phillips P 2012 Advanced Solid State Physics (Cambridge: Cambridge University Press)
[21] Laverock J, Dugdale S B, Major Z, Alam M A, Ru N, Fisher I R, Santi G, and Bruno E 2005 Phys. Rev. B 71 085114
[22] Malliakas C, Billinge S J, Kim H J, and Kanatzidis M G 2005 J. Am. Chem. Soc. 127 6510
[23] Watanabe S 2013 Abstr. Appl. Anal. 2013 1
[24]Julian C 2007 Introduction to Scanning Tunneling Microscopy (New York: Columbia University)
[25] Kikuchi A 1998 J. Phys. Soc. Jpn. 67 1308
[26] Garcia D R, Gweon G H, Zhou S Y, Graf J, Jozwiak C M, Jung M H, Kwon Y S, and Lanzara A 2007 Phys. Rev. Lett. 98 166403
[27] Kiselev E I, Scheurer M S, Wölfle P, and Schmalian J 2017 Phys. Rev. B 95 125122
[28] Leggett A J 1965 Phys. Rev. 140 A1869
[29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[30] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, and Dabo I 2009 J. Phys.: Condens. Matter 21 395502
[32] Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[33] Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617
Related articles from Frontiers Journals
[1] Peng-Tao Yang, Qing-Xin Dong, Peng-Fei Shan, Zi-Yi Liu, Jian-Ping Sun, Zhi-Ling Dun, Yoshiya Uwatoko, Gen-Fu Chen, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of Superconductivity on the Border of Antiferromagnetic Order in RbMn$_{6}$Bi$_{5}$ under High Pressure: A New Family of Mn-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(6): 087402
[2] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 087402
[3] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 087402
[4] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 087402
[5] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 087402
[6] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 087402
[7] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 087402
[8] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 087402
[9] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 087402
[10] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 087402
[11] ZHENG Ping, CHEN Gen-Fu, LI Zheng, HU Wan-Zheng, DONG Jing, LI Gang, WANG Nan-Lin, LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2As2(A=Sr, Ba)[J]. Chin. Phys. Lett., 2009, 26(10): 087402
[12] TAO Qian, SHEN Jing-Qin, LI Lin-Jun, LIN Xiao, LUO Yong-Kang, CAO Guang-Han, XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals[J]. Chin. Phys. Lett., 2009, 26(9): 087402
[13] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 087402
[14] OU Hong-Wei, ZHAO Jia-Feng, ZHANG Yan, SHEN Da-Wei, ZHOU Bo, YANGLe-Xian, HE Cheng, CHEN Fei, XU Min, WU Tao, CHEN Xian-Hui, CHEN Yan, FENG Dong-Lai. Angle Integrated Photoemission Study of SmO0.85F0.15FeAs[J]. Chin. Phys. Lett., 2008, 25(6): 087402
[15] MU Gang, ZHU Xi-Yu, FANG Lei, SHAN Lei, REN Cong, WEN Hai-Hu. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements[J]. Chin. Phys. Lett., 2008, 25(6): 087402
Viewed
Full text


Abstract