CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Spin Transport Properties of MnBi$_{2}$Te$_{4}$-Based Magnetic Tunnel Junctions |
Xinlong Dong1,2,3, Xin Jia1,2, Zhi Yan2, Xuemin Shen1,2, Zeyu Li3, Zhenhua Qiao3,4*, and Xiaohong Xu2* |
1College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China 2Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030031, China 3International Center for Quantum Design of Functional Materials, University of Science and Technology of China, Hefei 230026, China 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
Xinlong Dong, Xin Jia, Zhi Yan et al 2023 Chin. Phys. Lett. 40 087301 |
|
|
Abstract The van der Waals heterojunctions, stacking of different two-dimensional materials, have opened unprecedented opportunities to explore new physics and device concepts. Here, combining the density functional theory with non-equilibrium Green's function technique, we systematically investigate the spin-polarized transport properties of van der Waals magnetic tunnel junctions (MTJs), Cu/MnBi$_{2}$Te$_{4}$/MnBi$_{2}$Te$_{4}$/Cu and Cu/MnBi$_{2}$Te$_{4}$/h-BN/$n\cdot$MnBi$_{2}$Te$_{4}$/Cu ($n=1$, 2, 3). It is found that the maximum tunnel magnetoresistance of Cu/MnBi$_{2}$Te$_{4}$/h-BN/3$\cdot$MnBi$_{2}$Te$_{4}$/Cu MTJs can reach 162.6%, exceeding the system with only a single layer MnBi$_{2}$Te$_{4}$. More interestingly, our results indicate that Cu/MnBi$_{2}$Te$_{4}$/h-BN/$n\cdot$MnBi$_{2}$Te$_{4}$/Cu ($n=2$, 3) MTJs can realize the switching function, while Cu/MnBi$_{2}$Te$_{4}$/h-BN/3$\cdot$MnBi$_{2}$Te$_{4}$/Cu MTJs exhibit the negative differential resistance. The Cu/MnBi$_{2}$Te$_{4}$/h-BN/3$\cdot$MnBi$_{2}$Te$_{4}$/Cu in the parallel state shows a spin injection efficiency of more than 83.3%. Our theoretical findings of the transport properties will shed light on the possible experimental studies of MnBi$_{2}$Te$_{4}$-based van der Waals magnetic tunneling junctions.
|
|
Received: 11 May 2023
Published: 01 August 2023
|
|
PACS: |
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
|
|
|
[1] | Prinz G A 1998 Science 282 1660 |
[2] | Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, and Treger D M 2001 Science 294 1488 |
[3] | Chappert C, Fert A, and Van Dau F N 2007 Nat. Mater. 6 813 |
[4] | Wood R 2009 J. Magn. Magn. Mater. 321 555 |
[5] | Khvalkovskiy A V, Apalkov D, Watts S, Chepulskii R, Beach R S, Ong A, Tang X, Driskill-Smith A, Butler W H, and Visscher P B 2013 J. Phys. D 46 074001 |
[6] | Jia X T and Xia K 2014 Front. Phys. 9 768 |
[7] | Zhuang J N, Wang Y, Zhou Y, Wang J, and Guo H 2017 Front. Phys. 12 127304 |
[8] | Lan G B, Xu H J, Zhang Y, Cheng C, He B, Li J H, He C L, Wan C H, Feng J F, Wei H X, Zhang J, Han X F, and Yu G Q 2023 Chin. Phys. Lett. 40 058501 |
[9] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patan A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501 |
[10] | Burch K S, Mandrus D, and Park J G 2018 Nature 563 47 |
[11] | Gong C and Zhang X 2019 Science 363 eaav4450 |
[12] | Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, and Gao C L 2019 Science 366 983 |
[13] | Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, and Xu X D 2018 Nat. Mater. 17 778 |
[14] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 |
[15] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[16] | Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, and Batzill M 2018 Nat. Nanotechnol. 13 289 |
[17] | Huang B V, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544 |
[18] | Li X L, Lu J T, Zhang J, You L, Su Y R, and Tsymbal E Y 2019 Nano Lett. 19 5133 |
[19] | Yan Z, Zhang R, Dong X, Qi S, and Xu X 2020 Phys. Chem. Chem. Phys. 22 14773 |
[20] | Pan L F, Huang L, Zhong M Z, Jiang X W, Deng H X, Li J B, Xia J B, and Wei Z M 2018 Nanoscale 10 22196 |
[21] | Lin Z Z and Chen X 2020 Adv. Electron. Mater. 6 1900968 |
[22] | Zhang L S, Li T, Li J, Jiang Y Y, Yuan J R, and Li H 2020 J. Phys. Chem. C 124 27429 |
[23] | Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303 |
[24] | Zhou J Q, Qiao J F, Duan C G, Bournel A, Wang K L, and Zhao W S 2019 ACS Appl. Mater. & Interfaces 11 17647 |
[25] | Pan L F, Wen H Y, Huang L, Chen L, Deng H X, Xia J B, and Wei Z M 2019 Chin. Phys. B 28 107504 |
[26] | Wu X M, Feng Y L, Li S, Zhang B Q, and Gao G Y 2020 J. Phys. Chem. C 124 16127 |
[27] | Feng Y L, Liu N, and Gao G Y 2021 Appl. Phys. Lett. 118 112407 |
[28] | Feng Y L, Wu X M, Hu L, and Gao G Y 2020 J. Mater. Chem. C 8 14353 |
[29] | Feng Y L, Wu X M, and Gao G Y 2020 Appl. Phys. Lett. 116 022402 |
[30] | Yan Z, Jia X, Shi X W, Dong X L, and Xu X H 2021 Appl. Phys. Lett. 118 223503 |
[31] | Zhan G H, Yang Z L, Luo K, Zhang D, Lou W K, Liu J T, Wu Z H, and Chang K 2022 MRS Bull. 47 1177 |
[32] | Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, and He K 2019 Chin. Phys. Lett. 36 076801 |
[33] | Li J H, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, and Xu Y 2019 Sci. Adv. 5 eaaw5685 |
[34] | Wang H Q, Wang D H, Yang Z L, Shi M J, Ruan J J, Xing D Y, Wang J, and Zhang H J 2020 Phys. Rev. B 101 081109 |
[35] | Zhang D Q, Shi M J, Zhu T S, Xing D Y, Zhang H J, and Wang J 2019 Phys. Rev. Lett. 122 206401 |
[36] | Yuasa S J, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868 |
[37] | Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, and Yang S H 2004 Nat. Mater. 3 862 |
[38] | Zhang S H, Xie Y Q, Hu Y B, Niu X B, and Wang Y 2018 Phys. Chem. Chem. Phys. 20 29440 |
[39] | Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 |
[40] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 |
[41] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[42] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[43] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[44] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[45] | Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 245407 |
[46] | Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 121104 |
[47] | Xing W Y, Qiu L Y, Wang X R, Yao Y Y, Ma Y, Cai R R, Jia S, Xie X C, and Han W 2019 Phys. Rev. X 9 011026 |
[48] | Kuang G W, Chen S Z, Yan L, Chen K Q, Shang X S, Liu P N, and Lin N 2018 J. Am. Chem. Soc. 140 570 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|