Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 080201    DOI: 10.1088/0256-307X/40/8/080201
GENERAL |
Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations
Si-Yu Zhu1, De-Xing Kong1, and Sen-Yue Lou2*
1Zhejiang Qiushi Institute for Mathematical Medicine, Hangzhou 311121, China
2School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Cite this article:   
Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou 2023 Chin. Phys. Lett. 40 080201
Download: PDF(357KB)   PDF(mobile)(384KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The new dimensional deformation approach is proposed to generate higher-dimensional analogues of integrable systems. An arbitrary ($K$+1)-dimensional integrable Korteweg–de Vries (KdV) system, as an example, exhibiting symmetry, is illustrated to arise from a reconstructed deformation procedure, starting with a general symmetry integrable (1+1)-dimensional dark KdV system and its conservation laws. Physically, the dark equation systems may be related to dark matter physics. To describe nonlinear physics, both linear and nonlinear dispersions should be considered. In the original lower-dimensional integrable systems, only liner or nonlinear dispersion is included. The deformation algorithm naturally makes the model also include the linear dispersion and nonlinear dispersion.
Received: 24 June 2023      Editors' Suggestion Published: 18 July 2023
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Sb (Solitons; BGK modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/080201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Yu Zhu
De-Xing Kong
and Sen-Yue Lou
[1] Perlmutter S, Turner M S, and White M 1999 Phys. Rev. Lett. 83 670
[2]Poccia N, Ricci A, and Bianconi A 2010 J. Cosmol. 5 875
[3] Jungman G, Kamionkowskib M, and Griestd K 1996 Phys. Rep. 267 195
[4] Kupershmidt B A 2001 J. Nonlinear Math. Phys. 8 363
[5] Xiong N, Lou S Y, Li B, and Chen Y 2017 Commun. Theor. Phys. 68 13
[6] Ma W X and Fuchssteiner B 1996 Phys. Lett. A 213 49
[7] Ma W X 2005 J. Math. Phys. 46 033507
[8] Levi D and Ragnisco O 1984 Nuovo Cimento B 83 34
[9] Yan Z Y and Zhang H Q 2001 J. Math. Phys. 42 330
[10] Geng X G and Ma W X 1995 Nuovo Cimento A 108 477
[11] Fan E G 2001 Physica A 301 105
[12] Xu X X 2002 Phys. Lett. A 301 250
[13] Peng L, Lou S Y and Yang X D 2012 Commun. Theor. Phys. 58 1
[14] Lou S Y, Hao X Z, and Jia M 2023 J. High Energy Phys. 2023(03) 018
[15] Wang F R and Lou S Y 2023 Chaos Solitons & Fractals 169 113253
[16] Lou S Y, Jia M, and Hao X Z 2023 Chin. Phys. Lett. 40 020201
[17] Lou S Y, Hao X Z and Jia M 2023 Acta Phys. Sin. 72 100204 (in Chinese)
[18] Jia M and Lou S Y 2023 Appl. Math. Lett. 143 108684
[19] Casati M and Zhang D D 2023 arXiv:2305.08449v1 [nlin.SI]
[20] Gao X N and Lou S Y 2012 Phys. Lett. B 707 209
[21] Kupershmidt B A 1984 Phys. Lett. A 102 213
[22] Gao X N, Lou S Y, and Tang X Y 2013 J. High Energy Phys. 2013(05) 029
[23] Mathieu P 1988 J. Math. Phys. 29 2499
[24] Lou S Y 2023 arXiv:2305.12388v1 [nlin.SI]
[25] Weiss J 1986 J. Math. Phys. 27 1293
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 080201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 080201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 080201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 080201
[5] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 080201
[6] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 080201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 080201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 080201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 080201
[10] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 080201
[11] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 080201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 080201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 080201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 080201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 080201
Viewed
Full text


Abstract