CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Influence of Fr?hlich Interaction on Intersubband Transitions of InGaAs/InAlAs-Based Quantum Cascade Detector Structures Investigated by Infrared Modulated Photoluminescence |
Liangqing Zhu1†*, Shuman Liu2†, Jun Shao3*, Xiren Chen3, Fengqi Liu2, Zhigao Hu1, and Junhao Chu1,3 |
1Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
|
|
Cite this article: |
Liangqing Zhu, Shuman Liu, Jun Shao et al 2023 Chin. Phys. Lett. 40 077503 |
|
|
Abstract We demonstrate the use of an infrared modulated photoluminescence (PL) method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition (ISBT) of InGaAs/InAlAs quantum cascade detector (QCD) structures. By configuring oblique and parallel excitation geometries, high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured. With support from numerical calculations based on the ${\boldsymbol k}$$\cdot$${\boldsymbol p}$ perturbation theory, the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures. Temperature evolution results show that the $k$-dependent transitions caused by longitudinal optical phonon-assisted scattering (Fröhlich interaction) plays an important role in the ISBT. These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.
|
|
Received: 21 February 2023
Published: 22 June 2023
|
|
PACS: |
75.50.Pp
|
(Magnetic semiconductors)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
75.25.-j
|
(Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))
|
|
|
|
|
[1] | Martyniuk P, Rogalski A, and Krishna S 2022 Phys. Rev. Appl. 17 027001 |
[2] | Giparakis M, Knötig H, Detz H, Beiser M, Schrenk W, Schwarz B, Strasser G, and Andrews A M 2022 Appl. Phys. Lett. 120 071104 |
[3] | Zhou X H, Li N, and Lu W 2019 Chin. Phys. B 28 027801 |
[4] | Hillbrand J, Krüger L M, Dal C S, Knötig H, Heidrich J, Andrews A M, Strasser G, Keller U, and Schwarz B 2021 Opt. Express 29 5774 |
[5] | Bigioli A, Armaroli G, Vasanelli A, Gacemi D, Todorov Y, Palaferri D, Li L, Davies A G, Linfield E H, and Sirtori C 2020 Appl. Phys. Lett. 116 161101 |
[6] | Graf M, Hoyler N, Giovannini M, Faist J, and Hofstetter D 2006 Appl. Phys. Lett. 88 241118 |
[7] | Giorgetta F R, Baumann E, Théron R, Pellaton M, Hofstetter D, Fischer M, and Faist J 2008 Appl. Phys. Lett. 92 121101 |
[8] | Kong N, Liu J Q, Li L, Liu F Q, Wang L J, and Wang Z G 2010 Chin. Phys. Lett. 27 038501 |
[9] | Kong N, Liu J Q, Li L, Liu F Q, Wang L J, Wang Z G, and Lu W 2010 Chin. Phys. Lett. 27 128503 |
[10] | Tan Z Y, Wan W J, and Cao J C 2020 Chin. Phys. B 29 084212 |
[11] | Horiuchi N 2019 Nat. Photon. 13 376 |
[12] | Li K, Liu S M, Zhuo N, Liu J Q, Zhu Y X, Guo K, Zhai S Q, Zhang J C, Wang L J, Li Y, and Liu F Q 2022 Appl. Phys. Express 15 032005 |
[13] | Liu J Q, Wang F J, Zhai S Q, Zhang J C, Liu S M, Liu J, Wang L J, Liu F Q, and Wang Z G 2018 Appl. Phys. Express 11 042001 |
[14] | Zhou Y h, Zhai S Q, Wang F J, Liu J Q, Liu F Q, Liu S M, Zhang J C, Zhuo N, Wang L J, and Wang Z G 2016 AIP Adv. 6 035305 |
[15] | Ravikumar A P, De Jesus J, Tamargo M C, and Gmachl C F 2015 Appl. Phys. Lett. 107 141105 |
[16] | Reininger P, Schwarz B, Gansch R, Detz H, MacFarland D, Zederbauer T, Andrews A, Schrenk W, and Strasser G 2015 Opt. Express 23 6283 |
[17] | Seti J, Voitsekhivska O, Vereshko E, and Tkach M 2022 Appl. Nanosci. 12 533 |
[18] | Hofstetter D, Beck H, Epler J E, Kirste L, and Bour D P 2020 Superlattices Microstruct. 145 106631 |
[19] | Ohtani K, Meng B, Franckié M, Bosco L, Ndebeka-Bandou C, Beck M, and Faist J 2019 Sci. Adv. 5 eaau1632 |
[20] | Lai K T, Haywood S K, Mohamed A H, Missous M, and Gupta R 2005 Appl. Phys. Lett. 87 192113 |
[21] | Markmann S, Franckié M, Pal S, Stark D, Beck M, Fiebig M, Scalari G, and Faist J 2020 Nanophotonics 10 171 |
[22] | Ajili L, Scalari G, Hoyler N, Giovannini M, and Faist J 2005 Appl. Phys. Lett. 87 141107 |
[23] | Enobio E C I, Ohtani K, Ohno Y, and Ohno H 2013 Appl. Phys. Lett. 103 231106 |
[24] | Giorgetta F R, Baumann E, Graf M et al. 2009 IEEE J. Quantum Electron. 45 1039 |
[25] | Sauvage S, Moussa Z, Boucaud P, Julien F H, Berger V, and Nagle J 1997 Appl. Phys. Lett. 70 1345 |
[26] | Kaspi R, Tilton M L, Dente G C, Barresi R, Yang C, and Ongstad A P 2010 Appl. Phys. Lett. 97 201104 |
[27] | Łozińska A, Badura M, Bielak K, Ściana B, and Tłaczała M 2020 Opt. Appl. 50 251 |
[28] | Shao J, Lu W, Lü X, Yue F Y, Li Z F, Guo S L, and Chu J H 2006 Rev. Sci. Instrum. 77 063104 |
[29] | Shao J, Yue F Y, Lü X, Lu W, Huang W, Li Z F, Guo S L, and Chu J H 2006 Appl. Phys. Lett. 89 182121 |
[30] | Shao J, Lu W, Tsen G K O, Guo S L, and Dell J M 2012 J. Appl. Phys. 112 063512 |
[31] | Zhu L Q, Shao J, Chen X R, Li Y Q, Zhu L, Qi Z, Lin T, Bai W, Tang X D, and Chu J H 2016 Phys. Rev. B 94 155201 |
[32] | Chen X R, Zhu L Q, and Shao J 2019 Rev. Sci. Instrum. 90 093106 |
[33] | Wang F J, Liu S M, Ye X L, Zhuo N, Liu J Q, Wang L J, Zhang J C, Zhai S Q, Liu F Q, and Wang Z G 2018 J. Nanosci. Nanotechnol. 18 7604 |
[34] | Eaves L, Smith A, Skolnick M, and Cockayne B 1982 J. Appl. Phys. 53 4955 |
[35] | Klein P B, Furneaux J E, and Henry R L 1984 Phys. Rev. B 29 1947 |
[36] | Willatzen M and Voon L C L Y 2009 The ${\boldsymbol k}$$\cdot$${\boldsymbol p}$ Method (Berlin: Springer Science & Business Media) |
[37] | Wetzel C, Winkler R, Drechsler M, Meyer B, Rössler U, Scriba J, Kotthaus J, Härle V, and Scholz F 1996 Phys. Rev. B 53 1038 |
[38] | Chao C Y and Chuang S L 1992 Phys. Rev. B 46 4110 |
[39] | Sun Y, Thompson S E, and Nishida T 2010 Strain Effect in Semiconductors: Theory and Device Applications (Berlin: Springer Science & Business Media) |
[40] | Vurgaftman I, Meyer J R, and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 |
[41] | Boyd J P, Marilyn T, and Eliot P T S 2001 Chebyshev and Fourier Spectral Methods 2nd edn (New York: Dover Publications, Inc.) |
[42] | Poças L, Lopes E, Duarte J, Dias I, Lourenço S, Laureto E, Valadares M, Guimaraes P, Cury L, and Harmand J 2005 J. Appl. Phys. 97 103518 |
[43] | Yu P Y and Cardona M 2003 Fundamentals of Semiconductors: Physics and Materials Properties (Berlin: Springer Science & Business Media) |
[44] | Li J and Ning C Z 2004 Phys. Rev. B 70 125309 |
[45] | Reininger P, Schwarz B, Detz H, MacFarland D, Zederbauer T, Andrews A M, Schrenk W, Baumgartner O, Kosina H, and Strasser G 2014 Appl. Phys. Lett. 105 091108 |
[46] | Huang K and Zhu B F 1988 Phys. Rev. B 38 13377 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|