Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 077301    DOI: 10.1088/0256-307X/40/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superexchange Interactions and Magnetic Anisotropy in MnPSe$_3$ Monolayer
Guangyu Wang1,2†, Ke Yang3,1†, Yaozhenghang Ma1,2, Lu Liu1,2, Di Lu1,2, Yuxuan Zhou1,2, and Hua Wu1,2,4*
1Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Qi Zhi Institute, Shanghai 200232, China
3College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Cite this article:   
Guangyu Wang, Ke Yang, Yaozhenghang Ma et al  2023 Chin. Phys. Lett. 40 077301
Download: PDF(8717KB)   PDF(mobile)(9203KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional van der Waals magnetic materials are of great current interest for their promising applications in spintronics. Using density functional theory calculations in combination with the maximally localized Wannier functions method and the magnetic anisotropy analyses, we study the electronic and magnetic properties of MnPSe$_3$ monolayer. Our results show that it is a charge transfer antiferromagnetic (AF) insulator. For this Mn$^{2+}$ $3d^5$ system, although it seems straightforward to explain the AF ground state using the direct exchange, we find that the nearly 90$^\circ$ Mn–Se–Mn charge transfer type superexchange plays a dominant role in stabilizing the AF ground state. Moreover, our results indicate that, although the shape anisotropy favors an out-of-plane spin orientation, the spin-orbit coupling (SOC) leads to the experimentally observed in-plane spin orientation. We prove that the actual dominant contribution to the magnetic anisotropy comes from the second-order perturbation of the SOC, by analyzing its distribution over the reciprocal space. Using the AF exchange and anisotropy parameters obtained from our calculations, our Monte Carlo simulations give the Néel temperature $T_{\rm N}=47$ K for MnPSe$_3$ monolayer, which agrees with the experimental 40 K. Furthermore, our calculations show that under a uniaxial tensile (compressive) strain, Néel vector would be parallel (perpendicular) to the strain direction, which well reproduces the recent experiments. We also predict that $T_{\rm N}$ would be increased by a compressive strain.
Received: 06 April 2023      Published: 26 June 2023
PACS:  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  31.15.E (Density-functional theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/077301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guangyu Wang
Ke Yang
Yaozhenghang Ma
Lu Liu
Di Lu
Yuxuan Zhou
and Hua Wu
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Castro N A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X D 2017 Nature 546 270
[5] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[6] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303
[7] Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[8] Li H, Ruan S, and Zeng Y J 2019 Adv. Mater. 31 1900065
[9] Liang S J, Cheng B, Cui X, and Miao F 2020 Adv. Mater. 32 1903800
[10] Park T E, Peng L, Liang J, Hallal A, Yasin F S, Zhang X, Song K M, Kim S J, Kim K, Weigand M, Schütz G, Finizio S, Raabe J, Garcia K, Xia J, Zhou Y, Ezawa M, Liu X, Chang J, Koo H C, Kim Y D, Chshiev M, Fert A, Yang H, Yu X, and Woo S 2021 Phys. Rev. B 103 104410
[11] Shen Y H, Tong W Y, Hu H, Zheng J D, and Duan C G 2021 Chin. Phys. Lett. 38 037501
[12] Gao R L, Liu C, Fang L, Yao B X, Wu W, Xiao Q L, Hu S B, Liu Y, Gao H, Cao S X, Song G S, Meng X J, Chen X S, and Ren W 2022 Chin. Phys. Lett. 39 127301
[13] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[14] Wildes A R, Simonet V, Ressouche E, McIntyre G J, Avdeev M, Suard E, Kimber S A J, Lançon D, Pepe G, Moubaraki B, and Hicks T J 2015 Phys. Rev. B 92 224408
[15] Lançon D, Walker H C, Ressouche E, Ouladdiaf B, Rule K C, McIntyre G J, Hicks T J, Rønnow H M, and Wildes A R 2016 Phys. Rev. B 94 214407
[16] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, and Kloc C 2016 ACS Nano 10 1738
[17] Wang Y G, Ying J J, Zhou Z Y, Sun J L, Wen T, Zhou Y N, Li N N, Zhang Q, Han F, Xiao Y M, Chow P, Yang W, Struzhkin V V, Zhao Y S, and Mao H K 2018 Nat. Commun. 9 1914
[18] Liu Q Y, Wang L, Fu Y, Zhang X, Huang L L, Su H M, Lin J H, Chen X B, Yu D P, Cui X D, Mei J W, and Dai J F 2021 Phys. Rev. B 103 235411
[19] Wiedenmann A, Rossat-Mignod J, Louisy A, Brec R, and Rouxel J 1981 Solid State Commun. 40 1067
[20] Grasso V and Silipigni L 1999 J. Opt. Soc. Am. B 16 132
[21] Li X X, Wu X J, and Yang J L 2014 J. Am. Chem. Soc. 136 11065
[22] Wang Y G, Zhou Z Y, Wen T, Zhou Y H, Li N N, Han F, Xiao Y M, Chow P, Sun J L, Pravica M, Cornelius A L, Yang W G, and Zhao Y S 2016 J. Am. Chem. Soc. 138 15751
[23] Sivadas N, Okamoto S, and Xiao D 2016 Phys. Rev. Lett. 117 267203
[24] Onga M, Sugita Y, Ideue T, Nakagawa Y, Suzuki R, Motome Y, and Iwasa Y 2020 Nano Lett. 20 4625
[25] Ni Z L, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L, and Wu L 2021 Nat. Nanotechnol. 16 782
[26] Calder S, Haglund A V, Kolesnikov A I, and Mandrus D 2021 Phys. Rev. B 103 024414
[27] Bhutani A, Zuo J L, McAuliffe R D, dela C C R, and Shoemaker D P 2020 Phys. Rev. Mater. 4 034411
[28] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505
[34] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W, and Xu Y 2019 Sci. Adv. 5 eaaw5685
[35] An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, and Liu W M 2021 npj Comput. Mater. 7 45
[36] Wu H, Burnus T, Hu Z, Martin C, Maignan A, Cezar J C, Tanaka A, Brookes N B, Khomskii D I, and Tjeng L H 2009 Phys. Rev. Lett. 102 026404
[37] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685
[38] Marzari N, Mostofi A A, Yates J R, Souza I, and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[39] Metropolis N 1949 J. Am. Stat. Assoc. 44 335
[40] Fujii M, Yamaguchi T, Ohkochi T, De C D, Cheong S W, and Mizokawa T 2022 Phys. Rev. B 106 035118
[41]See the Supplemental Materials for the calculation of the magnetic exchange parameters, the hopping integrals of spin-up channels, the distributions of the MAE in the FM state over the reciprocal space, and the polar diagrams of the MAE under strains.
[42] Khomskii D I 2014 Transition Metal Compounds (Cambridge: Cambridge University Press)
[43] Yang K, Fan F, Wang H, Khomskii D I, and Wu H 2020 Phys. Rev. B 101 100402(R)
[44] Yang K, Wang G, Liu L, Lu D, and Wu H 2021 Phys. Rev. B 104 144416
[45] Wang G Y, Liu L, Yang K, and Wu H 2021 Phys. Rev. Mater. 5 124412
[46] Wang D S, Wu R, and Freeman A J 1993 Phys. Rev. Lett. 70 869
[47] van der Laan G 1998 J. Phys.: Condens. Matter 10 3239
[48] Qin Z Z, Qin G Z, Shao B, and Zuo X 2017 Nanoscale 9 11657
[49] Yue Y L, Jiang C, Han Y L, Wang M, Ren J, and Wu Y K 2020 J. Magn. Magn. Mater. 496 165929
Related articles from Frontiers Journals
[1] Guibin Lan, Hongjun Xu, Yu Zhang, Chen Cheng, Bin He, Jiahui Li, Congli He, Caihua Wan, Jiafeng Feng, Hongxiang Wei, Jia Zhang, Xiufeng Han, and Guoqiang Yu. Giant Tunneling Magnetoresistance in Spin-Filter Magnetic Tunnel Junctions Based on van der Waals A-Type Antiferromagnet CrSBr[J]. Chin. Phys. Lett., 2023, 40(5): 077301
[2] Cheng Cao, Shengru Chen, Jun Deng, Gang Li, Qinghua Zhang, Lin Gu, Tian-Ping Ying, Er-Jia Guo, Jian-Gang Guo, and Xiaolong Chen. Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO$_{3}$ Interface[J]. Chin. Phys. Lett., 2022, 39(4): 077301
[3] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077301
[4] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 077301
[5] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 077301
[6] Jin-Song Luo, Jie Lin, Li-Gong Zhang, Xiao-Yang Guo, Yong-Fu Zhu. Dependence of Thermal Annealing on Transparent Conducting Properties of HoF$_{3}$-Doped ZnO Thin Films[J]. Chin. Phys. Lett., 2019, 36(5): 077301
[7] Ruo-Yu Zhang, Ji-Ming Zheng, Zhen-Yi Jiang. Strain Effects on Properties of Phosphorene and Phosphorene Nanoribbons: a DFT and Tight Binding Study[J]. Chin. Phys. Lett., 2018, 35(1): 077301
[8] Cheng-Hua Fan, Qun-Jing Wang, Zhen-Fa Zi. Remanence Enhancement Effect in Ni$_{0.7}$Zn$_{0.3}$Fe$_{2}$O$_{4}$/Co$_{0.8}$Fe$_{2.2}$O$_{4}$ Ferrite Multilayer Film[J]. Chin. Phys. Lett., 2016, 33(11): 077301
[9] Jun-Song Liu, Hang Li, Bo-Wen Sun, Zhan-Hui Ding, Qi-Liang Wang, Shao-Heng Cheng, Hong-Dong Li. Boron-Doped Diamond-Film-Based Two-Dimensional Electrode of Electrophoresis Tank[J]. Chin. Phys. Lett., 2016, 33(11): 077301
[10] FENG Bao-Jie, LI Wen-Bin, QIU Jing-Lan, CHENG Peng, CHEN Lan, WU Ke-Hui. Variable Coupling Strength of Silicene on Ag(111)[J]. Chin. Phys. Lett., 2015, 32(03): 077301
[11] FENG Ya, FENG Bao-Jie, XIE Zhuo-Jin, LI Wen-Bin, LIU Xu, LIU De-Fa, ZHAO Lin, CHEN Lan, ZHOU Xing-Jiang, WU Ke-Hui. Observation of a Flat Band in Silicene[J]. Chin. Phys. Lett., 2014, 31(12): 077301
[12] LIU Rui, QIU Gang, CHEN Bing, GAO Bin, KANG Jin-Feng. Degradation Characteristics of Resistive Switching Memory Devices Correlated with Electric Field Induced Ion-Migration Effect of Anode[J]. Chin. Phys. Lett., 2013, 30(11): 077301
[13] ZHU De-Ming, MEN Chuan-Ling, WAN Xiang, DENG Chuang, LI Zhen-Peng. Self-Assembled in-Plane-Gate Thin-Film Transistors Gated by WOx Solid-State Electrolytes[J]. Chin. Phys. Lett., 2013, 30(8): 077301
[14] XU Gao-Bo, XU Qiu-Xia, YIN Hua-Xiang, ZHOU Hua-Jie, YANG Tao, NIU Jie-Bin, HE Xiao-Bin, MENG Ling-Kuan, YU Jia-Han, LI Jun-Feng, YAN Jiang, ZHAO Chao, CHEN Da-Peng. Characterization of HfSiAlON/MoAlN PMOSFETs Fabricated by Using a Novel Gate-Last Process[J]. Chin. Phys. Lett., 2013, 30(8): 077301
[15] E. OZTURK. Effect of Magnetic Field on a p-Type δ-Doped GaAs Layer[J]. Chin. Phys. Lett., 2010, 27(7): 077301
Viewed
Full text


Abstract