Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 070303    DOI: 10.1088/0256-307X/40/7/070303
GENERAL |
A High-Randomness and High-Stability Electronic Quantum Random Number Generator without Post Processing
Yu-Xuan Liu, Ke-Xin Huang, Yu-Ming Bai, Zhe Yang, and Jun-Lin Li*
State Key Laboratory of Low-Dimensional Quantum Physics; Department of Physics, Tsinghua University, Beijing 100084, China
Cite this article:   
Yu-Xuan Liu, Ke-Xin Huang, Yu-Ming Bai et al  2023 Chin. Phys. Lett. 40 070303
Download: PDF(1021KB)   PDF(mobile)(1048KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Random numbers are one of the key foundations of cryptography. This work implements a discrete quantum random number generator (QRNG) based on the tunneling effect of electrons in an avalanche photo diode. Without any post-processing and conditioning, this QRNG can output raw sequences at a rate of 100 Mbps. Remarkably, the statistical min-entropy of the 8,000,000 bits sequence reaches 0.9944 bits/bit, and the min-entropy validated by NIST SP 800-90B reaches 0.9872 bits/bit. This metric is currently the highest value we have investigated for QRNG raw sequences. Moreover, this QRNG can continuously and stably output raw sequences with high randomness over extended periods. The system produced a continuous output of 1,174 Gbits raw sequence for a duration of 11,744 s, with every 8 Mbits forming a unit to obtain a statistical min-entropy distribution with an average value of 0.9892 bits/bit. The statistical min-entropy of all data (1,174 Gbits) achieves the value of 0.9951 bits/bit. This QRNG can produce high-quality raw sequences with good randomness and stability. It has the potential to meet the high demand in cryptography for random numbers with high quality.
Received: 13 June 2023      Express Letter Published: 27 June 2023
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  73.40.Gk (Tunneling)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/070303       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/070303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Xuan Liu
Ke-Xin Huang
Yu-Ming Bai
Zhe Yang
and Jun-Lin Li
[1] Herrero-Collantes M and Garcia-Escartin J C 2017 Rev. Mod. Phys. 89 015004
[2] Bouda J, Pivoluska M, Plesch M, and Wilmott C 2012 Phys. Rev. A 86 062308
[3] Li H W, Yin Z Q, Wang S, Qian Y J, Chen W, Guo G C, and Han Z F 2015 Sci. Rep. 5 16200
[4] Bhattacharjee K and Das S 2022 WIREs: Comput. Mol. Sci. 45 100471
[5] Matsumoto M and Nishimura T 1998 ACM Trans. Model. Comput. Simul. 8 3
[6] Yoshiya K, Terashima Y, Kanno K, and Uchida A 2020 Opt. Express 28 3686
[7] Serrano R, Duran C, Hoang T T, Sarmiento M, Nguyen K D, Tsukamoto A, Suzaki K, and Pham C K 2021 IEEE Access 9 105748
[8] Monet F, Boisvert J S, and Kashyap R 2021 Sci. Rep. 11 13182
[9] Jiang H, Belkin D, Savelév S E et al. 2017 Nat. Commun. 8 882
[10] Kim G, In J H, Kim Y S, Rhee H, Park W, Song H, Park J, and Kim K M 2021 Nat. Commun. 12 2906
[11]Von Neumann J 2018 Mathematical Foundations of Quantum Mechanics (New Jersey: Princeton University Press) vol 53
[12] Zhang Y B, Lo H P, Mink A, Ikuta T, Honjo T, Takesue H, and Munro W J 2021 Nat. Commun. 12 1056
[13] Jennewein T, Achleitner U, Weihs G, Weinfurter H, and Zeilinger A 2000 Rev. Sci. Instrum. 71 1675
[14] Stefanov A, Gisin N, Guinnard O, Guinnard L, and Zbinden H 2000 J. Mod. Opt. 47 595
[15] Hoese M, Koch M K, Breuning F, Lettner N, Fehler K G, and Kubanek A 2022 Appl. Phys. Lett. 120 044001
[16] Wei W and Guo H 2009 Opt. Lett. 34 1876
[17] Ren M, Wu E, Liang Y, Jian Y, Wu G, and Zeng H 2011 Phys. Rev. A 83 023820
[18] Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, and Benson O 2011 Appl. Phys. Lett. 98 171105
[19] Guo H, Tang W, Liu Y, and Wei W 2010 Phys. Rev. E 81 051137
[20] Qi B, Chi Y M, Lo H K, and Qian L 2010 Opt. Lett. 35 312
[21] Xu F H, Qi B, Ma X F, Xu H, Zheng H X, and Lo H K 2012 Opt. Express 20 12366
[22] Nie Y Q, Huang L, Liu Y, Payne F, Zhang J, and Pan J W 2015 Rev. Sci. Instrum. 86 063105
[23] Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, and Matthews J C F 2018 Opt. Express 26 19730
[24] Lei W, Xie Z, Li Y, Fang J, and Shen W 2020 Quantum Inf. Process. 19 405
[25] Huang M, Chen Z, Zhang Y, and Guo H 2020 Appl. Sci. 10 2431
[26] Shen Y, Tian L, and Zou H 2010 Phys. Rev. A 81 063814
[27] Huang M, Chen Z, Zhang Y, and Guo H 2020 Entropy 22 618
[28] Samsonov E O, Pervushin B E, Ivanova A E, Santev A A, Egorov V I, Kynev S M, and Gleim A V 2020 Quantum Inf. Process. 19 326
[29] Bai B, Huang J Y, Qiao G R, Nie Y Q, Tang W J, Chu T, Zhang J, and Pan J W 2021 Appl. Phys. Lett. 118 264001
[30] Pervushin B E, Fadeev M A, Zinovev A V, Goncharov R K, Santev A A, Ivanova A E, Samsonov E O 2021 Nanosyst.: Phys. Chem. Math. 12 156
[31] Marosits Á, Schranz Á, and Udvary E 2020 Infocommun. J. 12 12
[32] Guo Y, Cai Q, Li P et al. 2021 APL Photon. 6 066105
[33] Zhou H H, Li J L, Zhang W X, and Long G L 2019 Phys. Rev. Appl. 11 034060
[34] Aungskunsiri K, Amarit R, Wongpanya K, Jantarachote S, Yamwong W, Saiburee S, Chanhorm S, Intarapanich A, and Sumriddetchkajorn S 2021 Appl. Phys. Lett. 119 074002
[35] Bernardo-Gavito R, Bagci I E, Roberts J et al. 2017 Sci. Rep. 7 17879
[36] Abraham N, Watanabe K, Taniguchi T, and Majumdar K 2022 ACS Nano 16 5898
[37] Shannon C E 1948 Bell Syst. Tech. J. 27 379
[38] Turan M S, Barker E, Kelsey J, McKay K A, Baish M L, and Boyle M 2018 NIST Special Publication 800-90B 102
[39] Schindler W and Killmann W 2003 Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications. In: Kaliski B S, Koc C K, and Paar C (eds) Cryptographic Hardware and Embedded Systems - CHES 2002. Lecture Notes in Computer Science (Berlin: Springer) vol 2523 p 431
[40] Wang J M, Xie T Y, Zhang H F, Yang D X, Xie C, and Wang J 2015 IEEE Photon. J. 7 7100808
[41] Zhou H, Li J L, Pan D, Zhang W, and Long G 2017 arXiv:1711.01752 [quant-ph]
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 070303
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070303
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 070303
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070303
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070303
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070303
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070303
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070303
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 070303
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 070303
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 070303
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 070303
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 070303
Viewed
Full text


Abstract