Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 070301    DOI: 10.1088/0256-307X/40/7/070301
GENERAL |
Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$
Jian-Yin Huang1,2†, Peng-Jun Liang1,2†, Liang Zheng1,2, Pei-Yun Li1,2, You-Zhi Ma1,2, Duan-Chen Liu1,2, Jing-Hui Xie1,2, Zong-Quan Zhou1,2,3*, Chuan-Feng Li1,2,3*, and Guang-Can Guo1,2,3
1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Jian-Yin Huang, Peng-Jun Liang, Liang Zheng et al  2023 Chin. Phys. Lett. 40 070301
Download: PDF(2427KB)   PDF(mobile)(2443KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence. The single Er$^{3+}$ in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously. However, to entangle distant Er$^{3+}$ ions through photonic connections, the emission frequency of individual Er$^{3+}$ in solid-state matrix must be the same, which is challenging because the emission frequency of Er$^{3+}$ depends on its local environment. Herein, we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er$^{3+}$ in a Y$_2$SiO$_5$ crystal by employing electrodes interfaced with a silicon photonic crystal cavity. We obtain a Stark shift of 182.9$\pm 0.8$ MHz, which is approximately 27 times of the optical emission linewidth, demonstrating promising applications in tuning the emission frequency of independent Er$^{3+}$ into the same spectral channels. Our results provide a useful solution for construction of scalable quantum networks based on single Er$^{3+}$ and a universal tool for tuning emission of individual rare-earth ions.
Received: 07 April 2023      Express Letter Published: 11 June 2023
PACS:  03.67.Hk (Quantum communication)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/070301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/070301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Yin Huang
Peng-Jun Liang
Liang Zheng
Pei-Yun Li
You-Zhi Ma
Duan-Chen Liu
Jing-Hui Xie
Zong-Quan Zhou
Chuan-Feng Li
and Guang-Can Guo
[1] Briegel H J, Dür W, Cirac J I, and Zoller P 1998 Phys. Rev. Lett. 81 5932
[2] Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33
[3] Bernien H, Hensen B, Pfaff W et al. 2013 Nature 497 86
[4] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, and Monroe C 2007 Nature 449 68
[5] Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, and Kimble H J 2007 Science 316 1316
[6] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, and Guo G C 2021 Nature 594 41
[7] Hensen B, Bernien H, Dréau A E et al. 2015 Nature 526 682
[8] Yu Y, Ma F, Luo X Y et al. 2020 Nature 578 240
[9] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, and Pan J W 2008 Nature 454 1098
[10] Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, and Weinfurter H 2012 Science 337 72
[11] Delteil A, Sun Z, Gao W B, Togan E, Faelt S, and Imamoğlu A 2016 Nat. Phys. 12 218
[12] Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H, and Gisin N 2007 Phys. Rev. Lett. 98 190503
[13] Fekete J, Rieländer D, Cristiani M, and de Riedmatten H 2013 Phys. Rev. Lett. 110 220502
[14] Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, and de Riedmatten H 2021 Nature 594 37
[15] Rakonjac J V, Lago-Rivera D, Seri A, Mazzera M, Grandi S, and de Riedmatten H 2021 Phys. Rev. Lett. 127 210502
[16] Zaske S, Lenhard A, Keßler C A et al. 2012 Phys. Rev. Lett. 109 147404
[17] Ikuta R, Kusaka Y, Kitano T, Kato H, Yamamoto T, Koashi M, and Imoto N 2011 Nat. Commun. 2 537
[18] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, and Kennedy T A B 2010 Nat. Phys. 6 894
[19] Böttger T, Thiel C, Cone R, and Sun Y 2009 Phys. Rev. B 79 115104
[20] Rančić M, Hedges M P, Ahlefeldt R L, and Sellars M J 2018 Nat. Phys. 14 50
[21] Huang J Y, Li P Y, Zhou Z Q, Li C F, and Guo G C 2022 Phys. Rev. B 105 245134
[22] Rakonjac J V, Chen Y H, Horvath S P, and Longdell J J 2020 Phys. Rev. B 101 184430
[23] Lauritzen B, Minář J, de Riedmatten H, Afzelius M, Sangouard N, Simon C, and Gisin N 2010 Phys. Rev. Lett. 104 080502
[24] Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D, and Tittel W 2015 Nat. Photon. 9 83
[25] Askarani M F, Lutz T, Verma V B et al. 2019 Phys. Rev. Appl. 11 054056
[26] Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong T, Sinclair N, and Faraon A 2019 Phys. Rev. Appl. 12 024062
[27] Stuart J S, Hedges M, Ahlefeldt R, and Sellars M 2021 Phys. Rev. Res. 3 L032054
[28] Craiciu I, Lei M, Rochman J, Bartholomew J G, and Faraon A 2021 Optica 8 114
[29] Liu D C, Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F, and Guo G C 2022 Phys. Rev. Lett. 129 210501
[30] Dibos A M, Raha M, Phenicie C M, and Thompson J D 2018 Phys. Rev. Lett. 120 243601
[31] Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M, and Thompson J D 2020 Nat. Commun. 11 1605
[32] Chen S, Raha M, Phenicie C M, Ourari S, and Thompson J D 2020 Science 370 592
[33] Uysal M T, Raha M, Chen S, Phenicie C M, Ourari S, Wang M, Van de Walle C G, Dobrovitski V V, and Thompson J D 2023 PRX Quantum 4 010323
[34] Ourari S, Dusanowski, Horvath S P, Uysal M T, Phenicie C M, Stevenson P, Raha M, Chen S, Cava R J, de Leon N P, and Thompson J D 2023 arXiv:2301.03564 [quant-ph]
[35] Ulanowski A, Merkel B, and Reiserer A 2022 Sci. Adv. 8 eabo4538
[36] Böttger T, Sun Y, Thiel C, and Cone R 2006 Phys. Rev. B 74 075107
[37] Lee G H, Lee C H, Van Der Zande A M, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Hone J, and Kim P 2014 APL Mater. 2 092511
[38] Black E D 2001 Am. J. Phys. 69 79
[39] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[40] Macfarlane R M 2007 J. Lumin. 125 156
[41] Horvath S P, Alqedra M K, Kinos A, Walther A, Dahlström J M, Kröll S, and Rippe L 2021 Phys. Rev. Res. 3 023099
[42] Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, and Guo G C 2020 Phys. Rev. Lett. 125 260504
[43] de Santis L, Trusheim M E, Chen K C, and Englund D R 2021 Phys. Rev. Lett. 127 147402
[44] Tamarat P, Gaebel T, Rabeau J et al. 2006 Phys. Rev. Lett. 97 083002
[45] Guillot-Noël O, Goldner P, Du Y L, Baldit E, Monnier P, and Bencheikh K 2006 Phys. Rev. B 74 214409
[46] Minář J, Lauritzen B, de Riedmatten H, Afzelius M, Simon C, and Gisin N 2009 New J. Phys. 11 113019
[47] Yu Y, Oser D, Prato G D, Urbinati E, Ávila J C, Zhang Y, Remy P, Marzban S, Gröblacher S, and Tittel W 2023 arXiv:2304.14685 [quant-ph]
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 070301
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 070301
[4] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 070301
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 070301
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 070301
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070301
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 070301
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 070301
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070301
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 070301
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070301
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070301
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070301
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070301
Viewed
Full text


Abstract