Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 057102    DOI: 10.1088/0256-307X/40/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Augmenting Density Matrix Renormalization Group with Disentanglers
Xiangjian Qian and Mingpu Qin*
Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article:   
Xiangjian Qian and Mingpu Qin 2023 Chin. Phys. Lett. 40 057102
Download: PDF(1919KB)   PDF(mobile)(2680KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Density matrix renormalization group (DMRG) and its extensions in the form of matrix product states are arguably the choice for the study of one-dimensional quantum systems in the last three decades. However, due to the limited entanglement encoded in the wave-function ansatz, to maintain the accuracy of DMRG with the increase of the system size in the study of two-dimensional systems, exponentially increased resources are required, which limits the applicability of DMRG to only narrow systems. We introduce a new ansatz in which DMRG is augmented with disentanglers to encode area-law-like entanglement entropy (entanglement entropy supported in the new ansatz scales as $l$ for an $l \times l$ system). In the new method, the $O(D^3)$ low computational cost of DMRG is kept (with an overhead of $O(d^4)$ and $d$ the dimension of the physical degrees of freedom). We perform benchmark calculations with this approach on the two-dimensional transverse Ising and Heisenberg models. This new ansatz extends the power of DMRG in the study of two-dimensional quantum systems.
Received: 02 February 2023      Express Letter Published: 11 April 2023
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/057102       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/057102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiangjian Qian and Mingpu Qin
[1]Cabra D, Honecker A, and Pujol P 2012 Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics (Berlin: Springer) vol 843
[2]Wen X G 2007 Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford: Oxford University Press)
[3]Marino E C 2017 Quantum Field Theory Approach to Condensed Matter Physics (Cambridge University Press, Cambridge)
[4]Berlinsky A J and Harris A B 2019 The Ising Model: Exact Solutions (Berlin: Springer International Publishing) p 441
[5] Dukelsky J, Pittel S, and Sierra G 2004 Rev. Mod. Phys. 76 643
[6] Lieb E H and F Y W 1968 Phys. Rev. Lett. 20 1445
[7] Qiao Y, Sun P, Xin Z, Cao J, and Yang W L 2020 J. Phys. A 53 075205
[8] Zou H Y, Zhao E, Guan X W, and Liu W V 2019 Phys. Rev. Lett. 122 180401
[9] Hirsch J E, Sugar R L, Scalapino D J, and Blankenbecler R 1982 Phys. Rev. B 26 5033
[10] Sandvik A W 1997 Phys. Rev. B 56 11678
[11] Huggins W J, O'Gorman B A, Rubin N C, Reichman D R, Babbush R, and Lee J 2022 Nature 603 416
[12] White S R 1992 Phys. Rev. Lett. 69 2863
[13] White S R 1993 Phys. Rev. B 48 10345
[14] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[15] Schollwöck U 2011 Ann. Phys. 326 96
[16] LeBlanc J P F, Antipov A E, Becca F et al. (Simons Collaboration) 2015 Phys. Rev. X 5 041041
[17] Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003
[18] Stoudenmire E and White S R 2012 Annu. Rev. Condens. Matter Phys. 3 111
[19] Stoudenmire E M, Wagner L O, White S R, and Burke K 2012 Phys. Rev. Lett. 109 056402
[20] Hida K 1999 Phys. Rev. Lett. 83 3297
[21] Nakano H, Minami Y, and Sasa S I 2021 Phys. Rev. Lett. 126 160604
[22] Verzhbitskiy I A, Voiry D, Chhowalla M, and Eda G 2020 2D Mater. 7 035013
[23] Astrakharchik G E, Kurbakov I L, Sychev D V, Fedorov A K, and Lozovik Y E 2021 Phys. Rev. B 103 L140101
[24] Dalla Piazza B, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A, and Rønnow H M 2015 Nat. Phys. 11 62
[25] Ludwig A W W, Poilblanc D, Trebst S, and Troyer M 2011 New J. Phys. 13 045014
[26] Brooks M, Lemeshko M, Lundholm D, and Yakaboylu E 2021 Phys. Rev. Lett. 126 015301
[27] Han C, Iftikhar Z, Kleeorin Y, Anthore A, Pierre F, Meir Y, Mitchell A K, and Sela E 2022 Phys. Rev. Lett. 128 146803
[28] Arovas D, Schrieffer J R, and Wilczek F 1984 Phys. Rev. Lett. 53 722
[29] Halperin B I 1984 Phys. Rev. Lett. 52 1583
[30] Wilczek F 1982 Phys. Rev. Lett. 49 957
[31] Liang S D and Pang H B 1994 Phys. Rev. B 49 9214
[32] Östlund S and Rommer S 1995 Phys. Rev. Lett. 75 3537
[33] Plenio M B, Eisert J, Dreißig J, and Cramer M 2005 Phys. Rev. Lett. 94 060503
[34] Vidal G, Latorre J I, Rico E, and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[35] Srednicki M 1993 Phys. Rev. Lett. 71 666
[36] Eisert J, Cramer M, and Plenio M B 2010 Rev. Mod. Phys. 82 277
[37] Orús R 2019 Nat. Rev. Phys. 1 538
[38] Bridgeman J C and Chubb C T 2017 J. Phys. A 50 223001
[39] Lami G, Carleo G, and Collura M 2022 Phys. Rev. B 106 L081111
[40] Liu W Y, Huang Y Z, Gong S S, and Z C G 2021 Phys. Rev. B 103 235155
[41] Scarpa G, Molnár A, Y G, García-Ripoll J J, Schuch N, Pérez-García D, and Iblisdir S 2020 Phys. Rev. Lett. 125 210504
[42] Liao H J, Liu J G, Wang L, and Xiang T 2019 Phys. Rev. X 9 031041
[43] Hubig C 2018 SciPost Phys. 5 47
[44] Vanderstraeten L, Burgelman L, Ponsioen B, Van Damme M, Vanhecke B, Corboz P, Haegeman J, and Verstraete F 2022 Phys. Rev. B 105 195140
[45] Felser T, Notarnicola S, and Montangero S 2021 Phys. Rev. Lett. 126 170603
[46] Qian X J and Qin M P 2022 Phys. Rev. B 105 205102
[47] Silvi P, Tschirsich F, Gerster M, Jünemann J, Jaschke D, Rizzi M, and Montangero S 2019 SciPost Physics Lecture Notes 8
[48] Cataldi G, Abedi A, Magnifico G, Notarnicola S, Pozza N D, Giovannetti V, and Montangero S 2021 Quantum 5 556
[49] Bridgeman J C, O'Brien A, Bartlett S D, and Doherty A C 2015 Phys. Rev. B 91 165129
[50] Vidal G 2008 Phys. Rev. Lett. 101 110501
[51] Evenbly G and Vidal G 2009 Phys. Rev. Lett. 102 180406
[52] Vidal G 2007 Phys. Rev. Lett. 99 220405
[53] Xie Z Y, Chen J, Yu J F, Kong X, Normand B, and Xiang T 2014 Phys. Rev. X 4 011025
[54] Verstraete F, Wolf M M, Perez-Garcia D, and Cirac J I 2006 Phys. Rev. Lett. 96 220601
[55] Evenbly G and Vidal G 2010 Phys. Rev. Lett. 104 187203
[56] Corboz P and Mila F 2014 Phys. Rev. Lett. 112 147203
[57] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, and Xiang T 2017 Phys. Rev. Lett. 118 137202
[58] Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, and Chan G K L 2017 Science 358 1155
[59] Liu W Y, Gong S S, Y B L, Poilblanc D, Chen W Q, and Z C G 2022 Sci. Bull. 67 1034
[60] Lubasch M, Cirac J I, and nuls M C B 2014 Phys. Rev. B 90 064425
[61] Xie Z Y, Liao H J, Huang R Z, Xie H D, Chen J, Liu Z Y, and Xiang T 2017 Phys. Rev. B 96 045128
[62] Fishman M T, Vanderstraeten L, Zauner-Stauber V, Haegeman J, and Verstraete F 2018 Phys. Rev. B 98 235148
[63] Qin M P 2020 Phys. Rev. B 102 125143
[64] Gong S S, Zhu W, Sheng D N, Motrunich O I, and Fisher M P A 2014 Phys. Rev. Lett. 113 027201
[65] Yan S, Huse D A, and White S R 2011 Science 332 1173
[66] Qin M, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R, and S. Zhang (Simons Collaboration on the Many-Electron Problem) 2020 Phys. Rev. X 10 031016
[67] Jiang H C and Kivelson S A 2021 Phys. Rev. Lett. 127 097002
[68] Gong S S, Zhu W, and Sheng D N 2021 Phys. Rev. Lett. 127 097003
[69] Jiang S, Scalapino D J, and White S R 2021 Proc. Natl. Acad. Sci. USA 118 e2109978118
[70] Ran S J 2020 Phys. Rev. A 101 032310
[71]By contracting the additional disentangler layer in Fig. (c) into the original MPS wave-function, the effective bond dimension for the resulting MPS is much larger than the original MPS. Thus, the FAMPS is a more entangled wave-function than the MPS.
[72] Evenbly G and Vidal G 2009 Phys. Rev. B 79 144108
[73] Xiang T, Lou J, and Z S 2001 Phys. Rev. B 64 104414
[74]We can still easily find a vertical cut which crosses only one bond, but the number of these cuts is smaller
[75] Syljuåsen O F and Sandvik A W 2002 Phys. Rev. E 66 046701
[76]The calculation of SSE QMC is performed with IsingMonteCarlo package at https://github.com/Renmusxd/IsingMonteCarlo
[77] Singh S, Pfeifer R N C, and Vidal G 2011 Phys. Rev. B 83 115125
[78] Choo K, Neupert T, and Carleo G 2019 Phys. Rev. B 100 125124
[79] Nomura Y and Imada M 2021 Phys. Rev. X 11 031034
[80] Hu W J, Becca F, Parola A, and Sorella S 2013 Phys. Rev. B 88 060402
[81] Paeckel S, Köhler T, Swoboda A, Manmana S R, Schollwöck U, and Hubig C 2019 Ann. Phys. 411 167998
[82] Bañuls M C, Hastings M B, Verstraete F, and Cirac J I 2009 Phys. Rev. Lett. 102 240603
[83] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401
[84] Gray J 2018 J. Open Source Software 3 819
[85]The $SU(2)$ symmetry code is developed with TensorKit package at https://github.com/Jutho/TensorKit.jl
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 057102
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 057102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 057102
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 057102
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 057102
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 057102
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 057102
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 057102
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 057102
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 057102
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 057102
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 057102
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 057102
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 057102
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 057102
Viewed
Full text


Abstract