CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Instability of Kagome Metal CsV$_{3}$Sb$_{5}$ in the $2 \times 2\times 2$ Charge Density Wave State |
Hongen Zhu1†, Tongrui Li1†, Fanghang Yu2, Yuliang Li1, Sheng Wang1, Yunbo Wu1, Zhanfeng Liu1, Zhengming Shang1, Shengtao Cui1, Yi Liu1, Guobin Zhang1, Lidong Zhang1, Zhenyu Wang2,5, Tao Wu2,4,5, Jianjun Ying2, Xianhui Chen2,3,4,5, and Zhe Sun1,2,4* |
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China 2Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China 3CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China 4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 5CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
|
|
Cite this article: |
Hongen Zhu, Tongrui Li, Fanghang Yu et al 2023 Chin. Phys. Lett. 40 047301 |
|
|
Abstract Recently discovered kagome metals $A$V$_{3}$Sb$_{5}$ ($A$ = K, Rb, and Cs) provide an ideal platform to study the correlation among nontrivial band topology, unconventional charge density wave (CDW), and superconductivity. The evolution of electronic structures associated with the change of lattice modulations is crucial for understanding of the CDW mechanism, with the combination of angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory calculations, we investigate how band dispersions change with the increase of lattice distortions. In particular, we focus on the electronic states around $\bar{M}$ point, where the van Hove singularities are expected to play crucial roles in the CDW transition. Previous ARPES studies reported a spectral weight splitting of the van Hove singularity around $\bar{M}$ point, which is associated with the 3D lattice modulations. Our studies reveal that this “splitting” can be connected to the two van Hove singularities at $k_{z}=0$ and $k_{z}=\pi /c$ in the normal states. When the electronic system enters into the CDW state, both van Hove singularities move down. Such novel properties are important for understanding of the CDW transition.
|
|
Received: 20 January 2023
Editors' Suggestion
Published: 02 April 2023
|
|
PACS: |
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
75.25.Dk
|
(Orbital, charge, and other orders, including coupling of these orders)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
|
|
|
[1] | Sachdev S 1992 Phys. Rev. B 45 12377 |
[2] | Balents L 2010 Nature 464 199 |
[3] | Guo H M and Franz M 2009 Phys. Rev. B 80 113102 |
[4] | Mazin I I et al. 2014 Nat. Commun. 5 4261 |
[5] | Kang M G et al. 2020 Nat. Mater. 19 163 |
[6] | Wang W S, Li Z Z, Xiang Y Y, Wang Q H 2013 Phys. Rev. B 87 115135 |
[7] | Classen L, Chubukov A V, Honerkamp C, Scherer M M 2020 Phys. Rev. B 102 125141 |
[8] | Park T, Ye M X, Balents L 2021 Phys. Rev. B 104 035142 |
[9] | Kiesel M L, Platt C, Thomale R 2013 Phys. Rev. Lett. 110 126405 |
[10] | Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122 |
[11] | Rice T M and Scott G K 1975 Phys. Rev. Lett. 35 120 |
[12] | Hirsch J E and Scalapino D J 1986 Phys. Rev. Lett. 56 2732 |
[13] | Markiewicz R 1997 J. Phys. Chem. Solids 58 1179 |
[14] | Ortiz B R et al. 2019 Phys. Rev. Mater. 3 094407 |
[15] | Ortiz B R et al. 2020 Phys. Rev. Lett. 125 247002 |
[16] | Ortiz B R et al. 2021 Phys. Rev. Mater. 5 034801 |
[17] | Li H X et al. 2021 Phys. Rev. X 11 031050 |
[18] | Yu F H et al. 2021 Phys. Rev. B 104 L041103 |
[19] | Yang S Y et al. 2020 Sci. Adv. 6 eabb6003 |
[20] | Kenney E M et al. 2021 J. Phys.: Condens. Matter 33 235801 |
[21] | Chen K Y et al. 2021 Phys. Rev. Lett. 126 247001 |
[22] | Yu F H et al. 2021 Nat. Commun. 12 3645 |
[23] | Kang M G et al. 2022 Nat. Phys. 18 301 |
[24] | Hu Y et al. 2022 Nat. Commun. 13 2220 |
[25] | Hu Y et al. 2022 Phys. Rev. B 106 L241106 |
[26] | Kang M G et al. 2023 Nat. Mater. 22 186 |
[27] | Liang Z W et al. 2021 Phys. Rev. X 11 031026 |
[28] | Luo Y et al. 2022 Phys. Rev. B 105 L241111 |
[29] | Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 046401 |
[30] | Lin Y P and Nandkishore RAHUL M 2022 Phys. Rev. B 106 L060507 |
[31] | Miao H et al. 2021 Phys. Rev. B 104 195132 |
[32] | Wang Z G et al. 2021 arXiv:2104.05556 [cond-mat.supr-con] |
[33] | Nakayama K et al. 2021 Phys. Rev. B 104 L161112 |
[34] | Hu Y et al. 2022 Sci. Bull. 67 495 |
[35] | Cho S et al. 2021 Phys. Rev. Lett. 127 236401 |
[36] | Liu Z H et al. 2021 Phys. Rev. X 11 041010 |
[37] | Wu X X et al. 2021 Phys. Rev. Lett. 127 177001 |
[38] | Luo H L et al. 2022 Nat. Commun. 13 273 |
[39] | Cai Y et al. 2021 arXiv:2109.12778 [cond-mat.str-el] |
[40] | Li C et al. 2022 Phys. Rev. Res. 4 033072 |
[41] | Nie L P et al. 2022 Nature 604 59 |
[42] | See the Supplemental Material in Ref. [29] for theoretical details. |
[43] | Nakayama K et al. 2022 Phys. Rev. X 12 011001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|