Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 047301    DOI: 10.1088/0256-307X/40/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Instability of Kagome Metal CsV$_{3}$Sb$_{5}$ in the $2 \times 2\times 2$ Charge Density Wave State
Hongen Zhu1†, Tongrui Li1†, Fanghang Yu2, Yuliang Li1, Sheng Wang1, Yunbo Wu1, Zhanfeng Liu1, Zhengming Shang1, Shengtao Cui1, Yi Liu1, Guobin Zhang1, Lidong Zhang1, Zhenyu Wang2,5, Tao Wu2,4,5, Jianjun Ying2, Xianhui Chen2,3,4,5, and Zhe Sun1,2,4*
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
2Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
3CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
5CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
Cite this article:   
Hongen Zhu, Tongrui Li, Fanghang Yu et al  2023 Chin. Phys. Lett. 40 047301
Download: PDF(19735KB)   PDF(mobile)(19743KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently discovered kagome metals $A$V$_{3}$Sb$_{5}$ ($A$ = K, Rb, and Cs) provide an ideal platform to study the correlation among nontrivial band topology, unconventional charge density wave (CDW), and superconductivity. The evolution of electronic structures associated with the change of lattice modulations is crucial for understanding of the CDW mechanism, with the combination of angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory calculations, we investigate how band dispersions change with the increase of lattice distortions. In particular, we focus on the electronic states around $\bar{M}$ point, where the van Hove singularities are expected to play crucial roles in the CDW transition. Previous ARPES studies reported a spectral weight splitting of the van Hove singularity around $\bar{M}$ point, which is associated with the 3D lattice modulations. Our studies reveal that this “splitting” can be connected to the two van Hove singularities at $k_{z}=0$ and $k_{z}=\pi /c$ in the normal states. When the electronic system enters into the CDW state, both van Hove singularities move down. Such novel properties are important for understanding of the CDW transition.
Received: 20 January 2023      Editors' Suggestion Published: 02 April 2023
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
  74.20.Pq (Electronic structure calculations)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/047301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongen Zhu
Tongrui Li
Fanghang Yu
Yuliang Li
Sheng Wang
Yunbo Wu
Zhanfeng Liu
Zhengming Shang
Shengtao Cui
Yi Liu
Guobin Zhang
Lidong Zhang
Zhenyu Wang
Tao Wu
Jianjun Ying
Xianhui Chen
and Zhe Sun
[1] Sachdev S 1992 Phys. Rev. B 45 12377
[2] Balents L 2010 Nature 464 199
[3] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[4] Mazin I I et al. 2014 Nat. Commun. 5 4261
[5] Kang M G et al. 2020 Nat. Mater. 19 163
[6] Wang W S, Li Z Z, Xiang Y Y, Wang Q H 2013 Phys. Rev. B 87 115135
[7] Classen L, Chubukov A V, Honerkamp C, Scherer M M 2020 Phys. Rev. B 102 125141
[8] Park T, Ye M X, Balents L 2021 Phys. Rev. B 104 035142
[9] Kiesel M L, Platt C, Thomale R 2013 Phys. Rev. Lett. 110 126405
[10] Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122
[11] Rice T M and Scott G K 1975 Phys. Rev. Lett. 35 120
[12] Hirsch J E and Scalapino D J 1986 Phys. Rev. Lett. 56 2732
[13] Markiewicz R 1997 J. Phys. Chem. Solids 58 1179
[14] Ortiz B R et al. 2019 Phys. Rev. Mater. 3 094407
[15] Ortiz B R et al. 2020 Phys. Rev. Lett. 125 247002
[16] Ortiz B R et al. 2021 Phys. Rev. Mater. 5 034801
[17] Li H X et al. 2021 Phys. Rev. X 11 031050
[18] Yu F H et al. 2021 Phys. Rev. B 104 L041103
[19] Yang S Y et al. 2020 Sci. Adv. 6 eabb6003
[20] Kenney E M et al. 2021 J. Phys.: Condens. Matter 33 235801
[21] Chen K Y et al. 2021 Phys. Rev. Lett. 126 247001
[22] Yu F H et al. 2021 Nat. Commun. 12 3645
[23] Kang M G et al. 2022 Nat. Phys. 18 301
[24] Hu Y et al. 2022 Nat. Commun. 13 2220
[25] Hu Y et al. 2022 Phys. Rev. B 106 L241106
[26] Kang M G et al. 2023 Nat. Mater. 22 186
[27] Liang Z W et al. 2021 Phys. Rev. X 11 031026
[28] Luo Y et al. 2022 Phys. Rev. B 105 L241111
[29] Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 046401
[30] Lin Y P and Nandkishore RAHUL M 2022 Phys. Rev. B 106 L060507
[31] Miao H et al. 2021 Phys. Rev. B 104 195132
[32] Wang Z G et al. 2021 arXiv:2104.05556 [cond-mat.supr-con]
[33] Nakayama K et al. 2021 Phys. Rev. B 104 L161112
[34] Hu Y et al. 2022 Sci. Bull. 67 495
[35] Cho S et al. 2021 Phys. Rev. Lett. 127 236401
[36] Liu Z H et al. 2021 Phys. Rev. X 11 041010
[37] Wu X X et al. 2021 Phys. Rev. Lett. 127 177001
[38] Luo H L et al. 2022 Nat. Commun. 13 273
[39] Cai Y et al. 2021 arXiv:2109.12778 [cond-mat.str-el]
[40] Li C et al. 2022 Phys. Rev. Res. 4 033072
[41] Nie L P et al. 2022 Nature 604 59
[42] See the Supplemental Material in Ref. [29] for theoretical details.
[43] Nakayama K et al. 2022 Phys. Rev. X 12 011001
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 047301
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 047301
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 047301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 047301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 047301
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 047301
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 047301
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 047301
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 047301
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 047301
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 047301
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 047301
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 047301
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 047301
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 047301
Viewed
Full text


Abstract