Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 047102    DOI: 10.1088/0256-307X/40/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y$_{0.5}$Fe$_{3}$Sn$_{3}$ Single Crystals
Yang Liu1,2,3, Meng Lyu3, Junyan Liu3, Shen Zhang3,4, Jinying Yang3,4, Zhiwei Du5, Binbin Wang3, Hongxiang Wei3, and Enke Liu1,3*
1School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
2Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5Guobiao (Beijing) Testing & Certification Co., Ltd., Beijing 100088, China
Cite this article:   
Yang Liu, Meng Lyu, Junyan Liu et al  2023 Chin. Phys. Lett. 40 047102
Download: PDF(19544KB)   PDF(mobile)(19559KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Kagome materials have been studied intensively in condensed matter physics. With rich properties, various Kagome materials emerge during this process. Here, we grew single crystals of Y$_{0.5}$Fe$_{3}$Sn$_{3}$ and confirmed an YCo$_{6}$Ge$_{6}$-type Kagome-lattice structure by detailed crystal structure characterizations. This compound bears an antiferromagnetic ordering at $T_{\rm N} = 551$ K, and shows a weak ferromagnetism at low temperatures, where an anomalous Hall effect was observed, suggesting the non-zero Berry curvature. With the unstable antiferromagnetic ground state, our systematic investigations make Y$_{0.5}$Fe$_{3}$Sn$_{3}$ a potential Kagome compound for Kagome or topological physics.
Received: 10 February 2023      Editors' Suggestion Published: 11 March 2023
PACS:  71.20.Eh (Rare earth metals and alloys)  
  75.30.Gw (Magnetic anisotropy)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  72.15.-v (Electronic conduction in metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/047102       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/047102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Liu
Meng Lyu
Junyan Liu
Shen Zhang
Jinying Yang
Zhiwei Du
Binbin Wang
Hongxiang Wei
and Enke Liu
[1] Syozi I 1951 Prog. Theor. Phys. 6 306
[2] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[3] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282
[4] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C G, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, and Felser C 2019 Adv. Mater. 31 1806622
[5] Zeng Q Q, Gu G X, Shi G, Shen J L, Ding B, Zhang S, Xi X K, Felser C, Li Y Q, and Liu E K 2021 Sci. Chin. Phys. Mech. & Astron. 64 287512
[6] Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212
[7] Nayak A K, Fischer J E, Sun Y, Yan B H, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C, and Parkin S S P 2016 Sci. Adv. 2 e1501870
[8] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, and Nakatsuji S 2017 Nat. Phys. 13 1085
[9] Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090
[10] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[11] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[12] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[13] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Seshadri R, and Wilson S D 2021 Phys. Rev. X 11 041030
[14] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[15] Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137
[16] Gong C S, Tian S J, Tu Z J, Yin Q W, Fu Y, Luo R T, and Lei H C 2022 Chin. Phys. Lett. 39 087401
[17] Shores M P, Nytko E A, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[18] Mendels P and Bert F 2010 J. Phys. Soc. Jpn. 79 011001
[19] Khuntia P, Velazquez M, Barthelemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469
[20] Okamoto Y, Nohara M, Aruga-Katori H, and Takagi H 2007 Phys. Rev. Lett. 99 137207
[21] Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S T S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Son Z D, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S, and Hasan M Z 2020 Nature 583 533
[22] Liu Z H, Zhao N N, Li M, Yin Q W, Wang Q, Liu Z T, Shen D W, Huang Y B, Lei H C, Liu K, and Wang S C 2021 Phys. Rev. B 104 115122
[23] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P, and Wang S C 2021 Nat. Commun. 12 3129
[24] Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett. 127 266401
[25] Gu X, Chen C, Wei W S, Gao L L, Liu J Y, Du X, Pei D, Zhou J S, Xu R Z, Yin Z X, Zhao W X, Li Y D, Jozwiak C, Bostwick A, Rotenberg E, Backes D, Veiga L S I, Dhesi S, Hesjedal T, van der Laan G, Du H F, Jiang W J, Qi Y P, Li G, Shi W J, Liu Z K, Chen Y L, and Yang L X 2022 Phys. Rev. B 105 155108
[26] Hu Y, Wu X X, Yang Y Q, Gao S Y, Plumb N C, Schnyder A P, Xie W W, Ma J Z, and Shi M 2022 Sci. Adv. 8 eadd2024
[27]Koretskaya O E and Skolozdra R V 1986 Inorg. Mater. 22 606
[28] El Idrissi B C, Venturini G, and Malaman B 1991 Mater. Res. Bull. 26 1331
[29] Cadogan J M, S, Ryan D H, Moze O, and Kockelmann W 2000 J. Appl. Phys. 87 6046
[30] Canfield P C and Fisk Z 1992 Philos. Mag. B 65 1117
[31] Kanatzidis M G, Pottgen R, and Jeitschko W 2005 Angew. Chem. Int. Ed. Engl. 44 6996
[32] Weiland A, Eddy L J, McCandless G T, Hodovanets H, Paglione J, and Chan J Y 2020 Cryst. Growth & Des. 20 6715
[33] Mazet T and Malaman B 2000 J. Magn. Magn. Mater. 219 33
[34] Mazet T and Malaman B 2001 J. Alloys Compd. 325 67
[35]Hurd C M 1972 The Hall Effect in Metals and Alloys (New York: Plenum Press)
Related articles from Frontiers Journals
[1] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 047102
[2] CHAO Luo-Meng, BAO Li-Hong, O. Tegus. Optical Response of CeB6 Nanoparticles with Different Sizes and Shapes from Discrete-Dipole Approximation[J]. Chin. Phys. Lett., 2015, 32(4): 047102
[3] LI Lei, ZHOU Zhong-Xiang, YANG Wen-Long, LI Huan, WU Ye. Upconversion Emission Properties of Erbium- and Ytterbium-Doped Potassium Lithium Tantalate Niobate Ceramics[J]. Chin. Phys. Lett., 2013, 30(12): 047102
[4] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 047102
[5] LI Fa-Shen, WEN Fu-Sheng, ZHOU Dong, QIAO Liang, ZUO Wen-Liang. Microwave Magnetic Properties of Nd2Fe17N3-δ with Planar Anisotropy[J]. Chin. Phys. Lett., 2008, 25(3): 047102
[6] ZHANG Chang-Wen, ZHANG Zhong, WANG Shao-Qing, LI Hua, DONG Jian-Min, XING Nai-Sheng, GUO Yong-Quan, LI Wei. First-Principles Study of Electronic Structure of the Laves Phase ZrFe2[J]. Chin. Phys. Lett., 2007, 24(2): 047102
[7] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, GUO Yong-Quan, LI Wei. Electronic Structure and Magnetic Properties of SmCo7-xZrx[J]. Chin. Phys. Lett., 2006, 23(6): 047102
[8] HOU Ting-Ping, WANG Ren-Hui, GUI Jia-Nian, WANG Jian-Bo, ZHAO Dong-Shan, GUO Jun-Qing. Experimental Observation on Orientation Relationship between Binary Cd5.7Yb Quasicrystal and its Crystalline Approximant Cd6Yb[J]. Chin. Phys. Lett., 2006, 23(5): 047102
[9] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, WANG Yong-Juan, PAN Feng-Chun, GUO Yong-Quan, LI Wei. Exchange Coupling and Stability of SmCo7-xHfx[J]. Chin. Phys. Lett., 2005, 22(11): 047102
[10] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, GUO Yong-Quan, LI Wei. Electronic Structure and Magnetism in Sm(Co,Cu)7[J]. Chin. Phys. Lett., 2005, 22(8): 047102
[11] LI Bao-Zeng, ZHENG Zhi-Qiang, YANG Ji-Wen, LI Ke-Wen, Jiang Hua, CHEN Xue-Sheng, WANG An-Ting, XIE Jian-Ping, MING Hai. Optical Transition Probability of Nd3+ Ions Doped in Ferroelectric PLZT for Active Electro-Optical Applications[J]. Chin. Phys. Lett., 2005, 22(1): 047102
[12] ZHANG Xi-Tian, LIU Yi-Chun, MA Jian-Gang, LU You-Ming, SHEN De-Zhen, XU Wub, ZHONG Guo-Zhu, FAN Xi-Wu. Blue Cathodoluminescence from Highly Er-Doped ZnO Thin Films Induced by the Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2003, 20(3): 047102
[13] HE Ye-Qing, ZHOU Shou-Zeng, ZHANG Zhen-Rong, HAN Bao-Shan. Origin of (105) Reflection of X-Ray Diffraction and Quantitative Evaluation of Alignment Degree for Sintered Nd-Fe-B Magnets[J]. Chin. Phys. Lett., 2001, 18(10): 047102
[14] DU Xue-yan, LI Wen-chao, LIU Zhen-xiang, XIE Kan. X-Ray Photoelectron Spectrascopy Investigation of Ceria Doped with Lanthanum Oxide[J]. Chin. Phys. Lett., 1999, 16(5): 047102
Viewed
Full text


Abstract