CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y$_{0.5}$Fe$_{3}$Sn$_{3}$ Single Crystals |
Yang Liu1,2,3, Meng Lyu3, Junyan Liu3, Shen Zhang3,4, Jinying Yang3,4, Zhiwei Du5, Binbin Wang3, Hongxiang Wei3, and Enke Liu1,3* |
1School of Rare Earths, University of Science and Technology of China, Hefei 230026, China 2Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 5Guobiao (Beijing) Testing & Certification Co., Ltd., Beijing 100088, China
|
|
Cite this article: |
Yang Liu, Meng Lyu, Junyan Liu et al 2023 Chin. Phys. Lett. 40 047102 |
|
|
Abstract Kagome materials have been studied intensively in condensed matter physics. With rich properties, various Kagome materials emerge during this process. Here, we grew single crystals of Y$_{0.5}$Fe$_{3}$Sn$_{3}$ and confirmed an YCo$_{6}$Ge$_{6}$-type Kagome-lattice structure by detailed crystal structure characterizations. This compound bears an antiferromagnetic ordering at $T_{\rm N} = 551$ K, and shows a weak ferromagnetism at low temperatures, where an anomalous Hall effect was observed, suggesting the non-zero Berry curvature. With the unstable antiferromagnetic ground state, our systematic investigations make Y$_{0.5}$Fe$_{3}$Sn$_{3}$ a potential Kagome compound for Kagome or topological physics.
|
|
Received: 10 February 2023
Editors' Suggestion
Published: 11 March 2023
|
|
PACS: |
71.20.Eh
|
(Rare earth metals and alloys)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
|
|
|
[1] | Syozi I 1951 Prog. Theor. Phys. 6 306 |
[2] | Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125 |
[3] | Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282 |
[4] | Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C G, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, and Felser C 2019 Adv. Mater. 31 1806622 |
[5] | Zeng Q Q, Gu G X, Shi G, Shen J L, Ding B, Zhang S, Xi X K, Felser C, Li Y Q, and Liu E K 2021 Sci. Chin. Phys. Mech. & Astron. 64 287512 |
[6] | Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212 |
[7] | Nayak A K, Fischer J E, Sun Y, Yan B H, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C, and Parkin S S P 2016 Sci. Adv. 2 e1501870 |
[8] | Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, and Nakatsuji S 2017 Nat. Phys. 13 1085 |
[9] | Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090 |
[10] | Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407 |
[11] | Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002 |
[12] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 |
[13] | Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Seshadri R, and Wilson S D 2021 Phys. Rev. X 11 041030 |
[14] | Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403 |
[15] | Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137 |
[16] | Gong C S, Tian S J, Tu Z J, Yin Q W, Fu Y, Luo R T, and Lei H C 2022 Chin. Phys. Lett. 39 087401 |
[17] | Shores M P, Nytko E A, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 |
[18] | Mendels P and Bert F 2010 J. Phys. Soc. Jpn. 79 011001 |
[19] | Khuntia P, Velazquez M, Barthelemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469 |
[20] | Okamoto Y, Nohara M, Aruga-Katori H, and Takagi H 2007 Phys. Rev. Lett. 99 137207 |
[21] | Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S T S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Son Z D, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S, and Hasan M Z 2020 Nature 583 533 |
[22] | Liu Z H, Zhao N N, Li M, Yin Q W, Wang Q, Liu Z T, Shen D W, Huang Y B, Lei H C, Liu K, and Wang S C 2021 Phys. Rev. B 104 115122 |
[23] | Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P, and Wang S C 2021 Nat. Commun. 12 3129 |
[24] | Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett. 127 266401 |
[25] | Gu X, Chen C, Wei W S, Gao L L, Liu J Y, Du X, Pei D, Zhou J S, Xu R Z, Yin Z X, Zhao W X, Li Y D, Jozwiak C, Bostwick A, Rotenberg E, Backes D, Veiga L S I, Dhesi S, Hesjedal T, van der Laan G, Du H F, Jiang W J, Qi Y P, Li G, Shi W J, Liu Z K, Chen Y L, and Yang L X 2022 Phys. Rev. B 105 155108 |
[26] | Hu Y, Wu X X, Yang Y Q, Gao S Y, Plumb N C, Schnyder A P, Xie W W, Ma J Z, and Shi M 2022 Sci. Adv. 8 eadd2024 |
[27] | Koretskaya O E and Skolozdra R V 1986 Inorg. Mater. 22 606 |
[28] | El Idrissi B C, Venturini G, and Malaman B 1991 Mater. Res. Bull. 26 1331 |
[29] | Cadogan J M, S, Ryan D H, Moze O, and Kockelmann W 2000 J. Appl. Phys. 87 6046 |
[30] | Canfield P C and Fisk Z 1992 Philos. Mag. B 65 1117 |
[31] | Kanatzidis M G, Pottgen R, and Jeitschko W 2005 Angew. Chem. Int. Ed. Engl. 44 6996 |
[32] | Weiland A, Eddy L J, McCandless G T, Hodovanets H, Paglione J, and Chan J Y 2020 Cryst. Growth & Des. 20 6715 |
[33] | Mazet T and Malaman B 2000 J. Magn. Magn. Mater. 219 33 |
[34] | Mazet T and Malaman B 2001 J. Alloys Compd. 325 67 |
[35] | Hurd C M 1972 The Hall Effect in Metals and Alloys (New York: Plenum Press) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|