CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Structure of the Weak Topological Insulator Candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$ |
Jierui Huang1,2†, Tan Zhang1†, Sheng Xu3,4†, Zhicheng Rao1,2, Jiajun Li1,2, Junde Liu1,2, Shunye Gao1,2, Yaobo Huang5, Wenliang Zhu6, Tianlong Xia3,4*, Hongming Weng1,2,7,8*, and Tian Qian1,7* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Department of Physics, Renmin University of China, Beijing 100872, China 4Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 5Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China 6School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China 7Songshan Lake Materials Laboratory, Dongguan 523808, China 8CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Jierui Huang, Tan Zhang, Sheng Xu et al 2023 Chin. Phys. Lett. 40 047101 |
|
|
Abstract One of the greatest triumph of condensed matter physics in the past ten years is the classification of materials by the principle of topology. The existence of topological protected dissipationless surface state makes topological insulators great potential for applications and hotly studied. However, compared with the prosperity of strong topological insulators, theoretical predicted candidate materials and experimental confirmation of weak topological insulators (WTIs) are both extremely rare. By combining systematic first-principles calculation and angle-resolved photoemission spectroscopy measurements, we have studied the electronic structure of the dark surface of the WTI candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$ and another related material Ba$_{3}$Cd$_{2}$As$_{4}$. The existence of two Dirac surface states on specific side surfaces predicted by theoretical calculations and the observed two band inversions in the Brillouin zone give strong evidence to prove that the Ba$_{3}$Cd$_{2}$Sb$_{4}$ is a WTI. The spectroscopic characterization of this Zintl Ba$_{3}$Cd$_{2}N_{4}$ ($N$ = As and Sb) family materials will facilitate applications of their novel topological properties.
|
|
Received: 02 February 2023
Published: 15 March 2023
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[2] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[3] | Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757 |
[4] | Konig M, Wiedmann S, Brune C et al. 2007 Science 318 766 |
[5] | Zhang P, Noguchi R, Kuroda K et al. 2021 Nat. Commun. 12 406 |
[6] | Fu L and Kane C L 2007 Phys. Rev. B 76 045302 |
[7] | Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803 |
[8] | Yan B H, Müchler L, and Felser C 2012 Phys. Rev. Lett. 109 116406 |
[9] | Rasche B, Isaeva A, Ruck M et al. 2013 Nat. Mater. 12 422 |
[10] | Weng H, Dai X, and Fang Z 2014 Phys. Rev. X 4 011002 |
[11] | Tang P Z, Yan B H, Cao W D et al. 2014 Phys. Rev. B 89 041409 |
[12] | Liu C C, Zhou J J, Yao Y, and Zhang F 2016 Phys. Rev. Lett. 116 066801 |
[13] | Eschbach M, Lanius M, Niu C et al. 2017 Nat. Commun. 8 14976 |
[14] | Lee K, Lange G F, Wang L L et al. 2021 Nat. Commun. 12 1855 |
[15] | Zhang T, Yue C, Zhang T et al. 2019 Phys. Rev. Res. 1 012001(R) |
[16] | Huang J W, Li S, Yoon C et al. 2021 Phys. Rev. X 11 031042 |
[17] | Xu L X, Xia Y Y Y, Liu S et al. 2021 Phys. Rev. B 103 L201109 |
[18] | Wan Q, Yang T Y, Li S et al. 2021 Phys. Rev. B 103 165107 |
[19] | Lin C, Ochi M, Noguchi R et al. 2021 Nat. Mater. 20 1093 |
[20] | Pauly C, Rasche B, Koepernik K et al. 2016 ACS Nano 10 4 3995 |
[21] | Noguchi R, Takahashi T, Kuroda K et al. 2019 Nature 566 518 |
[22] | Saparov B, Xia S Q, and Bobev S 2008 Inorg. Chem. 47 11237 |
[23] | Liu R Z, Huang X, Zhao L X et al. 2019 Chin. Phys. Lett. 36 117301 |
[24] | Liu S, Nie S M, Qi Y P et al. 2021 Chin. Phys. Lett. 38 077302 |
[25] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[26] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[27] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[28] | Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[29] | Mostofi A A, Yates J R, Lee Y S et al. 2008 Comput. Phys. Commun. 178 685 |
[30] | Marzari N, Mostofi A A, Yates J R et al. 2012 Rev. Mod. Phys. 84 1419 |
[31] | Wu Q S, Zhang S N, Song H F et al. 2018 Comput. Phys. Commun. 224 405 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|