Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 047101    DOI: 10.1088/0256-307X/40/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structure of the Weak Topological Insulator Candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$
Jierui Huang1,2†, Tan Zhang1†, Sheng Xu3,4†, Zhicheng Rao1,2, Jiajun Li1,2, Junde Liu1,2, Shunye Gao1,2, Yaobo Huang5, Wenliang Zhu6, Tianlong Xia3,4*, Hongming Weng1,2,7,8*, and Tian Qian1,7*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, Renmin University of China, Beijing 100872, China
4Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
5Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
6School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
7Songshan Lake Materials Laboratory, Dongguan 523808, China
8CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Jierui Huang, Tan Zhang, Sheng Xu et al  2023 Chin. Phys. Lett. 40 047101
Download: PDF(12746KB)   PDF(mobile)(12750KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One of the greatest triumph of condensed matter physics in the past ten years is the classification of materials by the principle of topology. The existence of topological protected dissipationless surface state makes topological insulators great potential for applications and hotly studied. However, compared with the prosperity of strong topological insulators, theoretical predicted candidate materials and experimental confirmation of weak topological insulators (WTIs) are both extremely rare. By combining systematic first-principles calculation and angle-resolved photoemission spectroscopy measurements, we have studied the electronic structure of the dark surface of the WTI candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$ and another related material Ba$_{3}$Cd$_{2}$As$_{4}$. The existence of two Dirac surface states on specific side surfaces predicted by theoretical calculations and the observed two band inversions in the Brillouin zone give strong evidence to prove that the Ba$_{3}$Cd$_{2}$Sb$_{4}$ is a WTI. The spectroscopic characterization of this Zintl Ba$_{3}$Cd$_{2}N_{4}$ ($N$ = As and Sb) family materials will facilitate applications of their novel topological properties.
Received: 02 February 2023      Published: 15 March 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/047101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/047101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jierui Huang
Tan Zhang
Sheng Xu
Zhicheng Rao
Jiajun Li
Junde Liu
Shunye Gao
Yaobo Huang
Wenliang Zhu
Tianlong Xia
Hongming Weng
and Tian Qian
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[4] Konig M, Wiedmann S, Brune C et al. 2007 Science 318 766
[5] Zhang P, Noguchi R, Kuroda K et al. 2021 Nat. Commun. 12 406
[6] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[7] Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803
[8] Yan B H, Müchler L, and Felser C 2012 Phys. Rev. Lett. 109 116406
[9] Rasche B, Isaeva A, Ruck M et al. 2013 Nat. Mater. 12 422
[10] Weng H, Dai X, and Fang Z 2014 Phys. Rev. X 4 011002
[11] Tang P Z, Yan B H, Cao W D et al. 2014 Phys. Rev. B 89 041409
[12] Liu C C, Zhou J J, Yao Y, and Zhang F 2016 Phys. Rev. Lett. 116 066801
[13] Eschbach M, Lanius M, Niu C et al. 2017 Nat. Commun. 8 14976
[14] Lee K, Lange G F, Wang L L et al. 2021 Nat. Commun. 12 1855
[15] Zhang T, Yue C, Zhang T et al. 2019 Phys. Rev. Res. 1 012001(R)
[16] Huang J W, Li S, Yoon C et al. 2021 Phys. Rev. X 11 031042
[17] Xu L X, Xia Y Y Y, Liu S et al. 2021 Phys. Rev. B 103 L201109
[18] Wan Q, Yang T Y, Li S et al. 2021 Phys. Rev. B 103 165107
[19] Lin C, Ochi M, Noguchi R et al. 2021 Nat. Mater. 20 1093
[20] Pauly C, Rasche B, Koepernik K et al. 2016 ACS Nano 10 4 3995
[21] Noguchi R, Takahashi T, Kuroda K et al. 2019 Nature 566 518
[22] Saparov B, Xia S Q, and Bobev S 2008 Inorg. Chem. 47 11237
[23] Liu R Z, Huang X, Zhao L X et al. 2019 Chin. Phys. Lett. 36 117301
[24] Liu S, Nie S M, Qi Y P et al. 2021 Chin. Phys. Lett. 38 077302
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[29] Mostofi A A, Yates J R, Lee Y S et al. 2008 Comput. Phys. Commun. 178 685
[30] Marzari N, Mostofi A A, Yates J R et al. 2012 Rev. Mod. Phys. 84 1419
[31] Wu Q S, Zhang S N, Song H F et al. 2018 Comput. Phys. Commun. 224 405
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 047101
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 047101
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 047101
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 047101
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 047101
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 047101
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 047101
[8] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 047101
[9] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 047101
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 047101
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 047101
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 047101
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 047101
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 047101
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 047101
Viewed
Full text


Abstract