PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Laser-Chirp Controlled Terahertz Wave Generation from Air Plasma |
Xing Xu1,2,3,4†, Yindong Huang2†*, Zhelin Zhang5,6,7†, Jinlei Liu8, Jing Lou2, Mingxin Gao2, Shiyou Wu1,3,4, Guangyou Fang1,3,4, Zengxiu Zhao8, Yanping Chen6,7*, Zhengming Sheng5,6,7, and Chao Chang1,2* |
1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China 2Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China 3Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China 4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 5Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China 6Key Laboratory for Laser Plasmas, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 7Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China 8Department of Physics, College of Sciences, National University of Defense Technology, Changsha 410073, China
|
|
Cite this article: |
Xing Xu, Yindong Huang, Zhelin Zhang et al 2023 Chin. Phys. Lett. 40 045201 |
|
|
Abstract We report the laser-chirp controlled terahertz (THz) wave generation from two-color-laser-induced air plasma. Our experimental results reveal that the THz wave is affected by both the laser energy and chirp, leading to radiation minima that can be quantitatively reconstructed using the linear-dipole-array model. The phase difference between the two colors, determined by the chirp and intensity of the laser, can account for the radiation minima. Furthermore, we observe an asynchronous variation in the generated THz spectrum, which suggests a THz frequency-dependent phase matching between the laser pulse and THz wave. These results highlight the importance of laser chirp during the THz wave generation and demonstrate the possibility of modulating the THz yields and spectrum through chirping the incident laser pulse. This work can provide valuable insights into the mechanism of plasma-based THz wave generation and offer a unique means to control THz emissions.
|
|
Received: 17 February 2023
Editors' Suggestion
Published: 04 April 2023
|
|
PACS: |
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
|
52.59.Ye
|
(Plasma devices for generation of coherent radiation ?)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
|
|
|
[1] | Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210 |
[2] | Liu J L, Dai J M, Chin S L, and Zhang X C 2010 Nat. Photon. 4 627 |
[3] | Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, and Tzortzakis S 2020 Nat. Commun. 11 292 |
[4] | Xu K Y, Liu M K, and Arbab M H 2022 Appl. Phys. Lett. 120 181107 |
[5] | Markelz A G and Mittleman D M 2022 ACS Photon. 9 1117 |
[6] | Lou J, Jiao Y, Yang R, Huang Y, Xu X, Zhang L, Ma Z, Yu Y, Peng W, Yuan Y, Zhong Y, Li S, Yan Y, Zhang F, Liang J, Du X, Chang C, and Qiu C W 2022 Proc. Natl. Acad. Sci. USA 119 e2209218119 |
[7] | Meng C, Chen W, Wang X, Lu Z, Huang Y, Liu J, Zhang D, Zhao Z, and Yuan J 2016 Appl. Phys. Lett. 109 131105 |
[8] | Zhang Z L, Chen Y P, Cui S, He F, Chen M, Zhang Z, Yu J, Chen L, Sheng Z, and Zhang J 2018 Nat. Photon. 12 554 |
[9] | Xie X, Dai J, and Zhang X C 2006 Phys. Rev. Lett. 96 075005 |
[10] | Kim K Y 2009 Phys. Plasmas 16 056706 |
[11] | Nguyen A, Kaltenecker K J, Delagnes J C, Zhou B, Cormier É, Fedorov N, Bouillaud R, Descamps D, Thiele I, Skupin S, Jepsen P U, and Bergé L 2019 Opt. Lett. 44 1488 |
[12] | Jang D, Schwartz R M, Woodbury D, Griff-McMahon J, Younis A H, Milchberg H M, and Kim K Y 2019 Optica 6 1338 |
[13] | Yu Z, Sun L, Zhang N, Wang J, Qi P, Guo L, Sun Q, Liu W, and Misawa H 2022 Ultrafast Sci. 2022 9853053 |
[14] | Zhao H, Zhang L, Huang S, Zhang S, and Zhang C 2018 IEEE Trans. Terahertz Sci. Technol. 8 299 |
[15] | Wang T J, Marceau C, Chen Y, Yuan S, Thberge F, Chteauneuf M, Dubois J, and Chin S L 2010 Appl. Phys. Lett. 96 211113 |
[16] | Liu Y, Liu S, Houard A, Mysyrowicz A, and Tikhonchuk V T 2020 Chin. Phys. Lett. 37 065201 |
[17] | Kim K Y, Taylor A J, Glownia J H, and Rodriguez G 2008 Nat. Photon. 2 605 |
[18] | Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N, de González A M P, Shkurinov A P, Makarov V A, Bergé L, and Chin S L 2016 Phys. Rev. Lett. 116 063902 |
[19] | Debayle A, Gremillet L, Bergé L, and Köhler C 2014 Opt. Express 22 13691 |
[20] | Li N, Bai Y, Miao T, Liu P, Li R, and Xu Z 2016 Opt. Express 24 23009 |
[21] | Li X L, Bai Y, Li N, and Liu P 2018 Opt. Lett. 43 114 |
[22] | Zheng Z G, Huang Y D, Guo Q et al. 2017 Phys. Plasmas 24 103303 |
[23] | Huang Y D, Xiang Z X, Xu X et al. 2021 Phys. Rev. A 103 033109 |
[24] | You Y S, Oh T I, and Kim K Y 2012 Phys. Rev. Lett. 109 183902 |
[25] | Zhang Z L, Chen Y P, Chen M, Zhang Z, Yu J, Sheng Z M, and Zhang J 2016 Phys. Rev. Lett. 117 243901 |
[26] | Liu Y, Houard A, Durand M, Prade B, and Mysyrowicz A 2009 Opt. Express 17 11480 |
[27] | Meng C, Lu Z, Huang Y, Wang X, Chen W, Zhang D, Zhao Z, and Yuan J 2016 Opt. Express 24 12301 |
[28] | Panov N A, Kosareva O G, Andreeva V A, SavelEv A B, and Shkurinov A P 2011 JETP Lett. 93 638 |
[29] | Gong C, Teramoto T, and Tonouchi M 2021 J. Infrared Millimeter Terahertz Waves 42 647 |
[30] | Nguyen A, de Alaiza M P G, Thiele I, Skupin S, and Bergé L 2018 New J. Phys. 20 033026 |
[31] | Zhang Z, Panov N, Andreeva V, Zhang Z, Slepkov A, Shipilo D, Thomson M D, Wang T J, Babushkin I, Demircan A, Morgner U, Chen Y, Kosareva O, and Savel'ev A 2018 Appl. Phys. Lett. 113 241103 |
[32] | Yu Z, Zhang N, Wang J, Dai Z, Gong C, Lin L, Guo L, and Liu W 2022 Opto-Electron. Adv. 5 210065 |
[33] | Jolly S W, Matlis N H, Ahr F, Leroux V, Eichner T, Calendron A L, Ishizuki H, Taira T, Kärtner F X, and Maier A R 2019 Nat. Commun. 10 2591 |
[34] | Zhang B L, Ma Z Z, Ma J L, Wu X J, Ouyang C, Kong D Y, Hong T S, Wang X, Yang P D, Chen L M, Li Y T, and Zhang J 2021 Laser & Photon. Rev. 15 2000295 |
[35] | Saalmann U, Giri S K, and Rost J M 2018 Phys. Rev. Lett. 121 153203 |
[36] | Luo S Z, Liu J L, Li X K et al. 2021 Phys. Rev. Lett. 126 103202 |
[37] | Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2007 Opt. Express 15 4577 |
[38] | Dai H M and Liu J S 2011 J. Mod. Opt. 58 859 |
[39] | Lu C H, He T, Zhang L Q, Zhang H, Yao Y H, Li S F, and Zhang S 2015 Phys. Rev. A 92 063850 |
[40] | Wang T J, Chen Y, Marceau C, Theberge F, Chateauneuf M, Dubois J, and Chin S L 2009 Appl. Phys. Lett. 95 131108 |
[41] | Wang T J, Yuan S, Chen Y, Daigle J F, Marceau C, Theberge F, Chateauneuf M, Dubois J, and Chin S L 2010 Appl. Phys. Lett. 97 111108 |
[42] | Wang T J, Ju J, Wei Y, Li R, Xu Z, and Chin S L 2014 Appl. Phys. Lett. 105 051101 |
[43] | Silaev A A, Romanov A A, and Vvedenskii N V 2020 Opt. Lett. 45 4527 |
[44] | Zhao J Y, Zhang Y Z, Wang Z, Chu W, Zeng B, Liu W W, Cheng Y, and Xu Z Z 2014 Laser Phys. Lett. 11 095302 |
[45] | Mi Y H, Johnston K, Shumakova V, Møller S H, Jana K, Zhang C, Staudte A, Sederberg S, and Corkum P B 2022 Photon. Res. 10 96 |
[46] | Wang X K, Ye J S, Sun W F, Han P, Hou L, and Zhang Y 2022 Light: Sci. & Appl. 11 129 |
[47] | Qi P F, Qian W Q, Guo L J, Xue J Y, Zhang N, Wang Y Z, Zhang Z, Zhang Z L, Lin L, Sun C L, Zhu L G, and Liu W W 2022 Sensors 22 7076 |
[48] | Kostin V A, Laryushin I, Silaev A A, and Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003 |
[49] | Zhang L L, Wang W M, Wu T, Zhang R, Zhang S, Zhang C, Zhang Y, Sheng Z, and Zhang X 2017 Phys. Rev. Lett. 119 235001 |
[50] | Woodbury D, Goffin A, Schwartz R M, Isaacs J, and Milchberg H M 2020 Phys. Rev. Lett. 125 133201 |
[51] | Schuh K, Kolesik M, Wright E M, Moloney J V, and Koch S W 2017 Phys. Rev. Lett. 118 063901 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|