Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 045201    DOI: 10.1088/0256-307X/40/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Laser-Chirp Controlled Terahertz Wave Generation from Air Plasma
Xing Xu1,2,3,4†, Yindong Huang2†*, Zhelin Zhang5,6,7†, Jinlei Liu8, Jing Lou2, Mingxin Gao2, Shiyou Wu1,3,4, Guangyou Fang1,3,4, Zengxiu Zhao8, Yanping Chen6,7*, Zhengming Sheng5,6,7, and Chao Chang1,2*
1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
3Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
5Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
6Key Laboratory for Laser Plasmas, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
7Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
8Department of Physics, College of Sciences, National University of Defense Technology, Changsha 410073, China
Cite this article:   
Xing Xu, Yindong Huang, Zhelin Zhang et al  2023 Chin. Phys. Lett. 40 045201
Download: PDF(6315KB)   PDF(mobile)(6713KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the laser-chirp controlled terahertz (THz) wave generation from two-color-laser-induced air plasma. Our experimental results reveal that the THz wave is affected by both the laser energy and chirp, leading to radiation minima that can be quantitatively reconstructed using the linear-dipole-array model. The phase difference between the two colors, determined by the chirp and intensity of the laser, can account for the radiation minima. Furthermore, we observe an asynchronous variation in the generated THz spectrum, which suggests a THz frequency-dependent phase matching between the laser pulse and THz wave. These results highlight the importance of laser chirp during the THz wave generation and demonstrate the possibility of modulating the THz yields and spectrum through chirping the incident laser pulse. This work can provide valuable insights into the mechanism of plasma-based THz wave generation and offer a unique means to control THz emissions.
Received: 17 February 2023      Editors' Suggestion Published: 04 April 2023
PACS:  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
  52.59.Ye (Plasma devices for generation of coherent radiation ?)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/045201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/045201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xing Xu
Yindong Huang
Zhelin Zhang
Jinlei Liu
Jing Lou
Mingxin Gao
Shiyou Wu
Guangyou Fang
Zengxiu Zhao
Yanping Chen
Zhengming Sheng
and Chao Chang
[1] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[2] Liu J L, Dai J M, Chin S L, and Zhang X C 2010 Nat. Photon. 4 627
[3] Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, and Tzortzakis S 2020 Nat. Commun. 11 292
[4] Xu K Y, Liu M K, and Arbab M H 2022 Appl. Phys. Lett. 120 181107
[5] Markelz A G and Mittleman D M 2022 ACS Photon. 9 1117
[6] Lou J, Jiao Y, Yang R, Huang Y, Xu X, Zhang L, Ma Z, Yu Y, Peng W, Yuan Y, Zhong Y, Li S, Yan Y, Zhang F, Liang J, Du X, Chang C, and Qiu C W 2022 Proc. Natl. Acad. Sci. USA 119 e2209218119
[7] Meng C, Chen W, Wang X, Lu Z, Huang Y, Liu J, Zhang D, Zhao Z, and Yuan J 2016 Appl. Phys. Lett. 109 131105
[8] Zhang Z L, Chen Y P, Cui S, He F, Chen M, Zhang Z, Yu J, Chen L, Sheng Z, and Zhang J 2018 Nat. Photon. 12 554
[9] Xie X, Dai J, and Zhang X C 2006 Phys. Rev. Lett. 96 075005
[10] Kim K Y 2009 Phys. Plasmas 16 056706
[11] Nguyen A, Kaltenecker K J, Delagnes J C, Zhou B, Cormier É, Fedorov N, Bouillaud R, Descamps D, Thiele I, Skupin S, Jepsen P U, and Bergé L 2019 Opt. Lett. 44 1488
[12] Jang D, Schwartz R M, Woodbury D, Griff-McMahon J, Younis A H, Milchberg H M, and Kim K Y 2019 Optica 6 1338
[13] Yu Z, Sun L, Zhang N, Wang J, Qi P, Guo L, Sun Q, Liu W, and Misawa H 2022 Ultrafast Sci. 2022 9853053
[14] Zhao H, Zhang L, Huang S, Zhang S, and Zhang C 2018 IEEE Trans. Terahertz Sci. Technol. 8 299
[15] Wang T J, Marceau C, Chen Y, Yuan S, Thberge F, Chteauneuf M, Dubois J, and Chin S L 2010 Appl. Phys. Lett. 96 211113
[16] Liu Y, Liu S, Houard A, Mysyrowicz A, and Tikhonchuk V T 2020 Chin. Phys. Lett. 37 065201
[17] Kim K Y, Taylor A J, Glownia J H, and Rodriguez G 2008 Nat. Photon. 2 605
[18] Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N, de González A M P, Shkurinov A P, Makarov V A, Bergé L, and Chin S L 2016 Phys. Rev. Lett. 116 063902
[19] Debayle A, Gremillet L, Bergé L, and Köhler C 2014 Opt. Express 22 13691
[20] Li N, Bai Y, Miao T, Liu P, Li R, and Xu Z 2016 Opt. Express 24 23009
[21] Li X L, Bai Y, Li N, and Liu P 2018 Opt. Lett. 43 114
[22] Zheng Z G, Huang Y D, Guo Q et al. 2017 Phys. Plasmas 24 103303
[23] Huang Y D, Xiang Z X, Xu X et al. 2021 Phys. Rev. A 103 033109
[24] You Y S, Oh T I, and Kim K Y 2012 Phys. Rev. Lett. 109 183902
[25] Zhang Z L, Chen Y P, Chen M, Zhang Z, Yu J, Sheng Z M, and Zhang J 2016 Phys. Rev. Lett. 117 243901
[26] Liu Y, Houard A, Durand M, Prade B, and Mysyrowicz A 2009 Opt. Express 17 11480
[27] Meng C, Lu Z, Huang Y, Wang X, Chen W, Zhang D, Zhao Z, and Yuan J 2016 Opt. Express 24 12301
[28] Panov N A, Kosareva O G, Andreeva V A, SavelEv A B, and Shkurinov A P 2011 JETP Lett. 93 638
[29] Gong C, Teramoto T, and Tonouchi M 2021 J. Infrared Millimeter Terahertz Waves 42 647
[30] Nguyen A, de Alaiza M P G, Thiele I, Skupin S, and Bergé L 2018 New J. Phys. 20 033026
[31] Zhang Z, Panov N, Andreeva V, Zhang Z, Slepkov A, Shipilo D, Thomson M D, Wang T J, Babushkin I, Demircan A, Morgner U, Chen Y, Kosareva O, and Savel'ev A 2018 Appl. Phys. Lett. 113 241103
[32] Yu Z, Zhang N, Wang J, Dai Z, Gong C, Lin L, Guo L, and Liu W 2022 Opto-Electron. Adv. 5 210065
[33] Jolly S W, Matlis N H, Ahr F, Leroux V, Eichner T, Calendron A L, Ishizuki H, Taira T, Kärtner F X, and Maier A R 2019 Nat. Commun. 10 2591
[34] Zhang B L, Ma Z Z, Ma J L, Wu X J, Ouyang C, Kong D Y, Hong T S, Wang X, Yang P D, Chen L M, Li Y T, and Zhang J 2021 Laser & Photon. Rev. 15 2000295
[35] Saalmann U, Giri S K, and Rost J M 2018 Phys. Rev. Lett. 121 153203
[36] Luo S Z, Liu J L, Li X K et al. 2021 Phys. Rev. Lett. 126 103202
[37] Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2007 Opt. Express 15 4577
[38] Dai H M and Liu J S 2011 J. Mod. Opt. 58 859
[39] Lu C H, He T, Zhang L Q, Zhang H, Yao Y H, Li S F, and Zhang S 2015 Phys. Rev. A 92 063850
[40] Wang T J, Chen Y, Marceau C, Theberge F, Chateauneuf M, Dubois J, and Chin S L 2009 Appl. Phys. Lett. 95 131108
[41] Wang T J, Yuan S, Chen Y, Daigle J F, Marceau C, Theberge F, Chateauneuf M, Dubois J, and Chin S L 2010 Appl. Phys. Lett. 97 111108
[42] Wang T J, Ju J, Wei Y, Li R, Xu Z, and Chin S L 2014 Appl. Phys. Lett. 105 051101
[43] Silaev A A, Romanov A A, and Vvedenskii N V 2020 Opt. Lett. 45 4527
[44] Zhao J Y, Zhang Y Z, Wang Z, Chu W, Zeng B, Liu W W, Cheng Y, and Xu Z Z 2014 Laser Phys. Lett. 11 095302
[45] Mi Y H, Johnston K, Shumakova V, Møller S H, Jana K, Zhang C, Staudte A, Sederberg S, and Corkum P B 2022 Photon. Res. 10 96
[46] Wang X K, Ye J S, Sun W F, Han P, Hou L, and Zhang Y 2022 Light: Sci. & Appl. 11 129
[47] Qi P F, Qian W Q, Guo L J, Xue J Y, Zhang N, Wang Y Z, Zhang Z, Zhang Z L, Lin L, Sun C L, Zhu L G, and Liu W W 2022 Sensors 22 7076
[48] Kostin V A, Laryushin I, Silaev A A, and Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003
[49] Zhang L L, Wang W M, Wu T, Zhang R, Zhang S, Zhang C, Zhang Y, Sheng Z, and Zhang X 2017 Phys. Rev. Lett. 119 235001
[50] Woodbury D, Goffin A, Schwartz R M, Isaacs J, and Milchberg H M 2020 Phys. Rev. Lett. 125 133201
[51] Schuh K, Kolesik M, Wright E M, Moloney J V, and Koch S W 2017 Phys. Rev. Lett. 118 063901
Related articles from Frontiers Journals
[1] Yi Liu, Shaojie Liu, Aurélien Houard, André Mysyrowicz, Vladimir T. Tikhonchuk. Terahertz Radiation from a Longitudinal Electric Field Biased Femtosecond Filament in Air *[J]. Chin. Phys. Lett., 0, (): 045201
[2] Yi Liu, Shaojie Liu, Aurélien Houard, André Mysyrowicz, Vladimir T. Tikhonchuk. Terahertz Radiation from a Longitudinal Electric Field Biased Femtosecond Filament in Air[J]. Chin. Phys. Lett., 2020, 37(6): 045201
[3] SUN Shao-Hua, LIU Xiao-Liang, LIU Zuo-Ye, WANG Xiao-Shan, DING Peng-Ji, LIU Qing-Cao, GUO Ze-Qin, HU Bi-Tao. The Angular Distribution of Optical Emission Spectroscopy from a Femtosecond Laser Filament in Air[J]. Chin. Phys. Lett., 2013, 30(4): 045201
[4] MA Yuan-Yuan, LU Xin, XI Ting-Ting, GONG Qi-Huang, ZHANG Jie,. Ray-Tracing Simulation on Filamentation of Prefocused and Freely Propagated Laser Pulses in Air[J]. Chin. Phys. Lett., 2009, 26(9): 045201
[5] H. Yoshitama, T. Kameshima, GU Yu-Qiu, GUO Yi, JIAO Chun-Ye, LIU Hong-Jie, PENG Han-Sheng, TANG Chuan-Ming, WANG Xiao-Dong, WEN Xian-Lun, WEN Tian-Shu, WU Yu-Chi, ZHANG Bao-Han, ZHU Qi-Hua, HUANG Xiao-Jun, AN Wei-Min, HUNG Wen-Hui, TANG Chuan-Xiang, LIN Yu-Zheng, WANG Xiao-Dong, CHEN Li-Ming, H.~Kotaki, M.~Kando, K.~Nakajima,. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime[J]. Chin. Phys. Lett., 2008, 25(8): 045201
[6] YANG Xiao-Qing, LEI An-Le, YU Wei, TANAKA Kazuo. Natural Cone Formation for Fast Ignition of Laser Fusion[J]. Chin. Phys. Lett., 2008, 25(6): 045201
[7] HAO Zuo-Qiang, ZHANG Jie, ZHANG Zhe, LU Xin, JIN Zhan, ZHONGJia-Yong, LIU Yun-Quan, WANG Zhao-Hua. Influence of Initial Pulse Chirp on Rainbow-Like Supercontinuum Generation from Filamentation in Air[J]. Chin. Phys. Lett., 2008, 25(4): 045201
[8] WANG Yun-Liang, ZHOU Zhong-Xiang, JIANG Xiang-Qian, YUAN Cheng-Xun, WANG Hai-Feng, ZHANG Hai-Feng, HOU Chun-Feng, JIANG Yong-Yuan, SUN Xiu-Dong, QIN Ru-Hu. Relativistic Electromagnetic Solitary Wave in a Cylindrical Magnetized Plasma[J]. Chin. Phys. Lett., 2006, 23(3): 045201
[9] JIN Zhan, ZHANG Jie, LIU Yun-Quan, LI Kun, YUAN Xiao-Hui, HAO Zuo-Qiang, ZHENG Jun, LU Xin, LI Yu-Tong, WANG Zhao-Hua, LING Wei-Jun, WEI Zhi-Yi. Coherence Measurement of White Light Emission from Femtosecond Laser Propagation in Air[J]. Chin. Phys. Lett., 2005, 22(10): 045201
[10] HAO Zuo-Qiang, YU Jin, ZHANG Jie, LI Yu-Tong, YUAN Xiao-Hui, ZHENG Zhi-Yuan, WANG Peng, WANG Zhao-Hua, LING Wei-Jun, WEI Zhi-Yi. Acoustic Diagnostics of Plasma Channels Induced by Intense Femtosecond Laser Pulses in Air[J]. Chin. Phys. Lett., 2005, 22(3): 045201
Viewed
Full text


Abstract