FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Two-Dimensional Gap Solitons in Parity-Time Symmetry Moiré Optical Lattices with Rydberg–Rydberg Interaction |
Bin-Bin Li1,2†, Yuan Zhao1,2†, Si-Liu Xu1,2,3*, Qin Zhou4, Qi-Dong Fu5, Fang-Wei Ye5*, Chun-Bo Hua2,3, Mao-Wei Chen1,2, Heng-Jie Hu2,3, Qian-Qian Zhou2,3, and Zhang-Cai Qiu2,3 |
1School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China 2Laboratory of Optoelectronic Information and Intelligent Control, Hubei University of Science and Technology, Xianning 437100, China 3School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China 4School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China 5School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
|
|
Cite this article: |
Bin-Bin Li, Yuan Zhao, Si-Liu Xu et al 2023 Chin. Phys. Lett. 40 044201 |
|
|
Abstract Realizing single light solitons that are stable in high dimensions is a long-standing goal in research of nonlinear optical physics. Here, we address a scheme to generate stable two-dimensional solitons in a cold Rydberg atomic system with a parity-time (PT) symmetric moiré optical lattice. We uncover the formation, properties, and their dynamics of fundamental and two-pole gap solitons as well as vortical ones. The PT symmetry, lattice strength, and the degrees of local and nonlocal nonlinearity are tunable and can be used to control solitons. The stability regions of these solitons are evaluated in two numerical ways: linear-stability analysis and time evolutions with perturbations. Our results provide an insightful understanding of solitons physics in combined versatile platforms of PT-symmetric systems and Rydberg–Rydberg interaction in cold gases.
|
|
Received: 17 February 2023
Editors' Suggestion
Published: 29 March 2023
|
|
PACS: |
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
94.05.Fg
|
(Solitons and solitary waves)
|
|
32.80.Ee
|
(Rydberg states)
|
|
42.30.Ms
|
(Speckle and moiré patterns)
|
|
|
|
|
[1] | Fleischer J W, Segev M, Efremidis N K, and Christodoulides D N 2003 Nature 422 147 |
[2] | Wang P, Zheng Y, Chen X, Huang C, Kartashov Y V, Torner L, Konotop V V, and Ye F 2020 Nature 577 42 |
[3] | Fu Q D, Wang P, Huang C M, Kartashov Y V, Torner L, Konotop V V, and Ye F W 2020 Nat. Photon. 14 663 |
[4] | Huang C M, Ye F W, Chen X F, Kartashov Y V, Konotop V V, and Torner L 2016 Sci. Rep. 6 32546 |
[5] | Kartashov Y V, Ye F, Konotop V V, and Torner L 2021 Phys. Rev. Lett. 127 163902 |
[6] | Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, and Zhang J 2023 Nature 615 231 |
[7] | González-Tudela A and Cirac J I 2019 Phys. Rev. A 100 053604 |
[8] | Salamon T, Celi A, Chhajlany R W, Frérot I, Lewenstein M, Tarruell L, and Rakshit D 2020 Phys. Rev. Lett. 125 030504 |
[9] | Luo X W and Zhang C 2021 Phys. Rev. Lett. 126 103201 |
[10] | Chen Z M, Liu X Y, and Zeng J H 2022 Front. Phys. 17 42508 |
[11] | Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179 |
[12] | Kartashov Y V, Astrakharchik G E, Malomed B A, and Torner L 2019 Nat. Rev. Phys. 1 185 |
[13] | Deutsch I H, Spreeuw R J C, Rolston S L, and Phillips W D 1995 Phys. Rev. A 52 1394 |
[14] | Zhang Y P and Wu B 2009 Phys. Rev. Lett. 102 093905 |
[15] | Zeng L W and Zeng J H 2019 Adv. Photon. 1 046004 |
[16] | Chen J B and Zeng J H 2021 Chaos, Solitons & Fractals 150 111149 |
[17] | Eggleton B J, Slusher R E, de Sterke C M, Krug P A, and Sipe J E 1996 Phys. Rev. Lett. 76 1627 |
[18] | Mandelik D, Morandotti R, Aitchison J S, and Silberberg Y 2004 Phys. Rev. Lett. 92 093904 |
[19] | Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401 |
[20] | Bender C M 2007 Rep. Prog. Phys. 70 947 |
[21] | Feng L, El-Ganainy R, and Ge L 2017 Nat. Photon. 11 752 |
[22] | Özdemir Ş K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783 |
[23] | Zhang Z Y, Zhang Y Q, Sheng J T, Yang L, Miri M A, Christodoulides D N, He B, Zhang Y P, and Xiao M 2016 Phys. Rev. Lett. 117 123601 |
[24] | Hang C, Huang G X, and Konotop V V 2013 Phys. Rev. Lett. 110 083604 |
[25] | Xu S L, Li H, Zhou Q, Zhou G P, Zhao D, Belić M R, He J R, and Zhao Y 2020 Opt. Express 28 16322 |
[26] | Konotop V V, Yang J, and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 |
[27] | Xu W X, Su S J, Xu B, Guo Y W, Xu S L, Zhao Y, and Hu Y H 2020 Opt. Express 28 35297 |
[28] | Zha X W and Ma G L 2011 Chin. Phys. Lett. 28 020301 |
[29] | Yıldırım A and Mohyud-Din S T 2010 Chin. Phys. Lett. 27 090501 |
[30] | Ikot A N and Akpan I O 2012 Chin. Phys. Lett. 29 90302 |
[31] | Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202 |
[32] | Li H, Xu S L, Belic M R, and Cheng J X 2018 Phys. Rev. A 98 033827 |
[33] | Friedler I, Petrosyan D, Fleischhauer M, and Kurizki G 2005 Phys. Rev. A 72 043803 |
[34] | Mohapatra A K, Jackson T R, and Adams C S 2007 Phys. Rev. Lett. 98 113003 |
[35] | Firstenberg O, Adams C S, and Hofferberth S 2016 J. Phys. B 49 152003 |
[36] | Murray C and Pohl T 2016 Adv. At. Mol. Opt. Phys. 65 321 |
[37] | Hang C, Li W B, and Huang G X 2019 Phys. Rev. A 100 043807 |
[38] | Xu S L, Zhou Q, Zhao D, Belić M R, and Zhao Y 2020 Appl. Math. Lett. 106 106230 |
[39] | Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, and Lukin M D 2011 Phys. Rev. Lett. 107 133602 |
[40] | He B, Sharypov A V, Sheng J, Simon C, and Xiao M 2014 Phys. Rev. Lett. 112 133606 |
[41] | Sakaguchi H and Malomed B A 2010 Phys. Rev. A 81 013624 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|