Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 043101    DOI: 10.1088/0256-307X/40/4/043101
ATOMIC AND MOLECULAR PHYSICS |
A Time-Dependent-Density-Functional-Theory Study of Charge Transfer Processes of Li$^{2+}$ Colliding with Ar in the MeV Region
Hui-Hui Zhang1, Wan-Dong Yu2*, Cong-Zhang Gao3*, and Yi-Zhi Qu1*
1School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
2State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
3Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Cite this article:   
Hui-Hui Zhang, Wan-Dong Yu, Cong-Zhang Gao et al  2023 Chin. Phys. Lett. 40 043101
Download: PDF(8736KB)   PDF(mobile)(8743KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study charge transfer of a multi-electron collision system Li$^{2+}$ + Ar using the time-dependent density functional theory non-adiabatically coupled to the molecular dynamics. By implementing the particle number projection method, the single- and double-charge transfer cross sections are extracted at MeV energies, which are in good agreement with the experimental data available. The analysis of charge transfer probabilities shows that for energies higher than 1.0 MeV, the single-charge transfer occurs for a broader range of impact parameters, while the double-charge transfer is dominated by close collisions. To gain the population of captured electrons on the projectile, we compute the orbital projection probabilities. It is found that the electrons of the Ar atom will most possibly transfer to the $2p$ orbitals of the Li$^{2+}$, and only a small portion of captured electrons distribute on the $s$ orbitals. This work verifies the capability of the present methodology in dealing with charge transfer in dressed ion collisions at MeV energies.
Received: 09 February 2023      Published: 04 April 2023
PACS:  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  34.70.+e (Charge transfer)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.90.+q (Other topics in atomic and molecular collision processes and interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/043101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/043101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Hui Zhang
Wan-Dong Yu
Cong-Zhang Gao
and Yi-Zhi Qu
[1] Aumayr F, Ueda K, Sokell E et al. 2019 J. Phys. B 52 171003
[2] Covington C, Hartig K, Russakoff A, Kulpins R, and Varga K 2017 Phys. Rev. A 95 052701
[3] Kirchner T, Gulyás L, Lüdde H, Henne A, Engel E, and Dreizler R 1997 Phys. Rev. Lett. 79 1658
[4] Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, and Dorn A 2018 Nat. Phys. 14 1062
[5] Gao J W, Wu Y, Wang J G, Dubois A, and Sisourat N 2019 Phys. Rev. Lett. 122 093402
[6] Zhu X L, Hu X Q, Yan S C et al. 2020 Nat. Commun. 11 2987
[7] Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, and Buenker R J 2020 Chin. Phys. Lett. 37 023401
[8] Chen S L, Zhou P P, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H, and Gao K L 2020 Chin. Phys. Lett. 37 073201
[9] Wang X X, Wang K, Peng Y G, Liu C H, Liu L, Wu Y, Liebermann H P, Buenker R J, and Qu Y Z 2021 Chin. Phys. Lett. 38 113401
[10] Olson R E and Salop A 1977 Phys. Rev. A 16 531
[11] McDowell M and Janev R 1985 J. Phys. B 18 L295
[12] Maynard G, Janev R, and Katsonis K 1992 J. Phys. B 25 437
[13] Eckstein W, Bohdansky J, and Roth J 1991 Nucl. Fusion: Spec. Suppl. (IAEA) 1 51
[14] Lindsay B G and Stebbings R F 2005 J. Geophys. Res. 110 A12213
[15] Pang S N, Wang F, Sun Y T, Mao F, and Wang X L 2022 Phys. Rev. A 105 032803
[16] Baxter M, Kirchner T, and Engel E 2017 Phys. Rev. A 96 032708
[17] Eichler J, Tsuji A, and Ishihara T 1981 Phys. Rev. A 23 2833
[18] Gulyás L, Fainstein P D, and Shirai T 2002 Phys. Rev. A 65 052720
[19] Calvayrac F, Reinhard P G, Suraud E, and Ullrich C 2000 Phys. Rep. 337 493
[20] Wang F, Hong X, Wang J, and Kim K S 2011 J. Chem. Phys. 134 154308
[21] Castro A, Isla M, Martı́nez J I, and Alonso J A 2012 Chem. Phys. 399 130
[22] Bubin S, Wang B, Pantelides S, and Varga K 2012 Phys. Rev. B 85 235435
[23] Gao C Z, Wang J, Wang F, and Zhang F S 2014 J. Chem. Phys. 140 054308
[24] Ullah R, Artacho E, and Correa A A 2018 Phys. Rev. Lett. 121 116401
[25] Yu W D, Gao C Z, Sato S A, Castro A, Rubio A, and Wei B R 2021 Phys. Rev. A 103 032816
[26] Simenel C 2010 Phys. Rev. Lett. 105 192701
[27] Sekizawa K and Yabana K 2013 Phys. Rev. C 88 014614
[28] Vignale G 1995 Phys. Rev. Lett. 74 3233
[29] Bates D R and McCarroll R 1958 Proc. R. Soc. A 245 175
[30] Tancogne-Dejean N, Oliveira M J, Andrade X et al. 2020 J. Chem. Phys. 152 124119
[31] Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36
[32] Perdew J P 1986 Phys. Rev. B 33 8822
[33] Gómez P A, Marques M A, Rubio A, and Castro A 2018 J. Chem. Theory Comput. 14 3040
[34] Manolopoulos D E 2002 J. Chem. Phys. 117 9552
[35] Ludde H J and Dreizler R M 1983 J. Phys. B 16 3973
[36] Bender M, Heenen P H, and Reinhard P G 2003 Rev. Mod. Phys. 75 121
[37] Losqui A L C, Zappa F, Sigaud G M, Wolff W, Sant'Anna M M, Santos A C F, Luna H, and Melo W S 2014 J. Phys. B 47 045202
[38] Dmitriev I S, Teplova Y A, Belkova Y A, Novikov N V, and Fainberg Y A 2010 At. Data Nucl. Data Tables 96 85
[39] Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, and Pichl L 2003 Phys. Rev. A 68 012716
[40] Quashie E E, Saha B C, Andrade X, and Correa A A 2017 Phys. Rev. A 95 042517
[41] Yu W, Zhang Y, Zhang F S, Hutton R, Zou Y, Gao C Z, and Wei B 2018 J. Phys. B 51 035204
Related articles from Frontiers Journals
[1] Mohammad Noh Daud, Gabriel G. Balint-Kurti. A Time-Dependent Wavepacket Method for Photodissociation Dynamics of Triatomic Molecule[J]. Chin. Phys. Lett., 2009, 26(7): 043101
[2] WANG Wen-Min0g, SHE Lei, LI Jiao-Mei, GAO Ke-Lin. Detection of Isotopes of Mercury Ions by Resonant Ejection in Paul Trap[J]. Chin. Phys. Lett., 2007, 24(7): 043101
[3] YANG Huanwang+, SUN Biao, LI Jiaming. Electronic Structure of Molecular Rydberg States[J]. Chin. Phys. Lett., 1992, 9(3): 043101
[4] ZHANG Li-Guo, LIU Zhong-Zheng, TAO Zhi-Ming, LING Li, CHEN Jing-Biao. Velocity Transfer Spectroscopy of Rb 420 nm Transition[J]. Chin. Phys. Lett., 2014, 31(08): 043101
Viewed
Full text


Abstract