NUCLEAR PHYSICS |
|
|
|
|
Precision Tests of the Nonlinear Mode Coupling of Anisotropic Flow via High-Energy Collisions of Isobars |
Jiangyong Jia1,2*, Giuliano Giacalone3*, and Chunjian Zhang1 |
1Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA 2Physics Department, Brookhaven National Laboratory, Upton, NY 11976, USA 3Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
|
|
Cite this article: |
Jiangyong Jia, Giuliano Giacalone, and Chunjian Zhang 2023 Chin. Phys. Lett. 40 042501 |
|
|
Abstract Valuable information on dynamics of expanding fluids can be inferred from the response of such systems to perturbations in their initial geometry. We apply this technique in high-energy $^{96}$Ru+$^{96}$Ru and $^{96}$Zr+$^{96}$Zr collisions to scrutinize the expansion dynamics of the quark-gluon plasma, where the initial geometry perturbations are sourced by the differences in deformations and radial profiles between $^{96}$Ru and $^{96}$Zr, and the collective response is captured by the change in anisotropic flow $V_n$ between the two collision systems. Using a transport model, we analyze how the nonlinear coupling between lower-order flow harmonics $V_2$ and $V_3$ to the higher-order flow harmonics $V_4$ and $V_5$, expected to scale as $V_{4\mathrm{NL}}=\chi_4 V_2^2$ and $V_{5\mathrm{NL}}=\chi_5 V_2V_3$, gets modified as one moves from $^{96}$Ru+$^{96}$Ru to $^{96}$Zr+$^{96}$Zr systems. We find that these scaling relations are valid to high precision: variations of order 20% in $V_{4\mathrm{NL}}$ and $V_{5\mathrm{NL}}$ due to differences in quadrupole deformation, octupole deformation, and nuclear skin modify $\chi_{4}$ and $\chi_5$ by about 1–2%. Percent-level deviations are however larger than the expected experimental uncertainties and could be measured. Therefore, collisions of isobars with different nuclear structures are a unique tool to isolate subtle nonlinear effects in the expansion of the quark-gluon plasma that would be otherwise impossible to access in a single collision system.
|
|
Received: 14 December 2022
Published: 14 March 2023
|
|
|
|
|
|
[1] | Ollitrault J Y 1992 Phys. Rev. D 46 229 |
[2] | Alver B and Roland G 2010 Phys. Rev. C 81 054905 |
[3] | Teaney D and Yan L 2011 Phys. Rev. C 83 064904 |
[4] | Heinz U and Snellings R 2013 Annu. Rev. Nucl. Part. Sci. 63 123 |
[5] | Teaney D and Yan L 2012 Phys. Rev. C 86 044908 |
[6] | Gardim F G, Grassi F, Luzum M, and Ollitrault J Y 2012 Phys. Rev. C 85 024908 |
[7] | Teaney D and Yan L 2014 Phys. Rev. C 90 024902 |
[8] | Gardim F G, Noronha-Hostler J, Luzum M, and Grassi F 2015 Phys. Rev. C 91 034902 |
[9] | Yan L and Ollitrault J Y 2015 Phys. Lett. B 744 82 |
[10] | Qian J, Heinz U W, and Liu J 2016 Phys. Rev. C 93 064901 |
[11] | Giacalone G, Yan L, Noronha-Hostler J, and Ollitrault J Y 2016 Phys. Rev. C 94 014906 |
[12] | Qian J and Heinz U 2016 Phys. Rev. C 94 024910 |
[13] | Giacalone G, Yan L, Noronha-Hostler J, and Ollitrault J Y 2017 J. Phys.: Conf. Ser. 779 012064 |
[14] | Qian J, Heinz U, He R, and Huo L 2017 Phys. Rev. C 95 054908 |
[15] | Giacalone G, Yan L, and Ollitrault J Y 2018 Phys. Rev. C 97 054905 |
[16] | Magdy N 2022 J. Phys. G 49 015105 |
[17] | Zhao S, Xu H J, Liu Y X, and Song H 2022 arXiv:2204.02387 [nucl-th] |
[18] | Aad G, Abbott B, Abdallah J et al. (ATLAS collaboration) 2014 Phys. Rev. C 90 024905 |
[19] | Aad G, Abbott B, Abdallah J et al. (ATLAS collaboration) 2015 Phys. Rev. C 92 034903 |
[20] | Acharya S, Adamová D, Adolfsson J et al. (ALICE collaboration) 2017 Phys. Lett. B 773 68 |
[21] | Acharya S, Adamová D, Adler A et al. (ALICE collaboration) 2020 J. High Energy Phys. 2020(05) 085 |
[22] | Adam J, Adamczyk L, Adams J R et al. (STAR collaboration) 2020 Phys. Lett. B 809 135728 |
[23] | Abdallah M S, Aboona B E, Adam J et al. (STAR collaboration) 2022 Phys. Rev. C 105 014901 |
[24] | Miller M L, Reygers K, Sanders S J, and Steinberg P 2007 Annu. Rev. Nucl. Part. Sci. 57 205 |
[25] | Lin Z W, Ko C M, Li B A, Zhang B, and Pal S 2005 Phys. Rev. C 72 064901 |
[26] | Bilandzic A, Snellings R, and Voloshin S 2011 Phys. Rev. C 83 044913 |
[27] | Bilandzic A, Christensen C H, Gulbrandsen K, Hansen A, and Zhou Y 2014 Phys. Rev. C 89 064904 |
[28] | Jia J Y, Zhou M L, and Trzupek A 2017 Phys. Rev. C 96 034906 |
[29] | Zhang C J and Jia J Y 2022 Phys. Rev. Lett. 128 022301 |
[30] | Jia J Y and Zhang C J 2023 Phys. Rev. C 107 L021901 |
[31] | Nijs G and van der Schee W 2021 arXiv:2112.13771 [nucl-th] |
[32] | Adam J, Adamczyk L, Adams J R et al. (STAR collaboration) 2021 Nucl. Sci. Tech. 32 48 |
[33] | Zhang C J, Bhatta S, and Jia J Y 2022 Phys. Rev. C 106 L031901 |
[34] | Magdy N 2022 arXiv:2206.05332 [nucl-th] |
[35] | Zhang C (STAR Collabration) 2022 Observation of Nuclear Deformation in Isobar Colli Sions, in Proceedings of 29th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, 4–10 April 2022, Kraków, Poland |
[36] | Lacey R A, Reynolds D, Taranenko A, Ajitanand N N, Alexander J M, Liu F H, Gu Y, and Mwai A 2016 J. Phys. G 43 10LT01 |
[37] | Huo P, Jia J, and Mohapatra S 2014 Phys. Rev. C 90 024910 |
[38] | Adam J, Adamová D, Aggarwal M M et al. (ALICE collaboration) 2016 Phys. Rev. Lett. 117 182301 |
[39] | Jia J Y 2022 Phys. Rev. C 105 014905 |
[40] | Aad G, Abbott B, Abdallah J et al. (ATLAS collaboration) 2012 Phys. Rev. C 86 014907 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|