GENERAL |
|
|
|
|
Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials |
Cuicui Ding1, Qin Zhou1,2*, Siliu Xu3, Houria Triki4, Mohammad Mirzazadeh5, and Wenjun Liu6* |
1Research Group of Nonlinear Optical Science and Technology, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China 2State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China 3School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China 4Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, 23000 Annaba, Algeria 5Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran 6State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
|
|
Cite this article: |
Cuicui Ding, Qin Zhou, Siliu Xu et al 2023 Chin. Phys. Lett. 40 040501 |
|
|
Abstract To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation, we focus on a system of three coupled Gross–Pitaevskii equations with spacetime-dependent external potentials and temporally modulated gain-loss distributions. With different external potentials and gain-loss distributions, various solutions for controlled nonautonomous matter-wave breathers and rogue waves are derived by the Darboux transformation method, such as breathers and rogue waves on arched and constant backgrounds which have the periodic and parabolic trajectories. Effects of the gain-loss distribution and linear potential on the breathers and rogue waves are studied. Nonautonomous two-breathers on the arched and constant backgrounds are also derived.
|
|
Received: 08 February 2023
Published: 29 March 2023
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
|
|
|
[1] | He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301 |
[2] | Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501 |
[3] | Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202 |
[4] | Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202 |
[5] | Guo H, Qiu X, Ma Y, Jiang H F, and Zhang X F 2021 Chin. Phys. B 30 060310 |
[6] | Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, and Zhang X F 2021 Optik 247 167932 |
[7] | Evrard B, Qu A, Dalibard J, and Gerbier F 2021 Science 373 1340 |
[8] | Borgh M O, Lovegrove J, and Ruostekoski J 2017 Phys. Rev. A 95 053601 |
[9] | Ollikainen T, Masuda S, Mottonen M, and Nakahara M 2017 Phys. Rev. A 95 013615 |
[10] | Meystre P 2001 Atom Optics (New York: Springer-Verlag) |
[11] | Sekh G A, Pepe F V, Facchi P, Pascazio S, and Salerno M 2015 Phys. Rev. A 92 013639 |
[12] | Chai X, Lao D, Fujimoto K, Hamazaki R, Ueda M, and Raman C 2020 Phys. Rev. Lett. 125 030402 |
[13] | Zhang X F, Hu X H, Liu X X, and Liu W M 2009 Phys. Rev. A 79 033630 |
[14] | Rajendran S, Muruganandamb P, and Lakshmanana M 2010 Physica D 239 366 |
[15] | Atre R, Panigrahi P K, and Agarwal G S 2006 Phys. Rev. E 73 056611 |
[16] | Yan M, DeSalvo B J, Ramachandhran B, Pu H, and Killian T C 2013 Phys. Rev. Lett. 110 123201 |
[17] | Shen Y J, Gao Y T, Zuo D W, Sun Y H, Feng Y J, and Xue L 2014 Phys. Rev. E 89 062915 |
[18] | Zhong Y, Triki H, and Zhou Q 2023 Commun. Theor. Phys. 75 025003 |
[19] | Qi Z Q, Zhang Z, and Li B 2021 Chin. Phys. Lett. 38 060501 |
[20] | Li J C, Chen J C, and Li B 2022 Nonlinear Dyn. 107 781 |
[21] | Jiang L, Li X, and Li B 2022 Phys. Scr. 97 115201 |
[22] | Serkin V N, Hasegawa A, and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102 |
[23] | Yang Z Y, Zhao L C, Zhang T, Feng X Q, and Yue R H 2011 Phys. Rev. E 83 066602 |
[24] | Ieda J, Miyakawa T, and Wadati M 2004 Phys. Rev. Lett. 93 194102 |
[25] | Serkin V N, Hasegawa A, and Belyaeva T L 2010 Phys. Rev. A 81 023610 |
[26] | Janis J, Banks M, and Bigelow N P 2005 Phys. Rev. A 71 013422 |
[27] | Che W J, Chen S C, Liu C, Zhao L C, and Akhmediev N 2022 Phys. Rev. A 105 043526 |
[28] | Liu C, Chen S C, Yao X K, and Akhmediev N 2022 Physica D 433 133192 |
[29] | Liu C, Chen S C, Yao X K, and Akhmediev N 2022 Chin. Phys. Lett. 39 094201 |
[30] | Ding C C, Zhou Q, Xu S L, Sun Y Z, Liu W J, Mihalache D, and Malomed B A 2023 Chaos Solitons & Fractals 169 113247 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|