Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 040501    DOI: 10.1088/0256-307X/40/4/040501
GENERAL |
Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials
Cuicui Ding1, Qin Zhou1,2*, Siliu Xu3, Houria Triki4, Mohammad Mirzazadeh5, and Wenjun Liu6*
1Research Group of Nonlinear Optical Science and Technology, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
2State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
3School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
4Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, 23000 Annaba, Algeria
5Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran
6State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Cuicui Ding, Qin Zhou, Siliu Xu et al  2023 Chin. Phys. Lett. 40 040501
Download: PDF(2676KB)   PDF(mobile)(2691KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation, we focus on a system of three coupled Gross–Pitaevskii equations with spacetime-dependent external potentials and temporally modulated gain-loss distributions. With different external potentials and gain-loss distributions, various solutions for controlled nonautonomous matter-wave breathers and rogue waves are derived by the Darboux transformation method, such as breathers and rogue waves on arched and constant backgrounds which have the periodic and parabolic trajectories. Effects of the gain-loss distribution and linear potential on the breathers and rogue waves are studied. Nonautonomous two-breathers on the arched and constant backgrounds are also derived.
Received: 08 February 2023      Published: 29 March 2023
PACS:  05.45.Yv (Solitons)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/040501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cuicui Ding
Qin Zhou
Siliu Xu
Houria Triki
Mohammad Mirzazadeh
and Wenjun Liu
[1] He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301
[2] Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501
[3] Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202
[4] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[5] Guo H, Qiu X, Ma Y, Jiang H F, and Zhang X F 2021 Chin. Phys. B 30 060310
[6] Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, and Zhang X F 2021 Optik 247 167932
[7] Evrard B, Qu A, Dalibard J, and Gerbier F 2021 Science 373 1340
[8] Borgh M O, Lovegrove J, and Ruostekoski J 2017 Phys. Rev. A 95 053601
[9] Ollikainen T, Masuda S, Mottonen M, and Nakahara M 2017 Phys. Rev. A 95 013615
[10]Meystre P 2001 Atom Optics (New York: Springer-Verlag)
[11] Sekh G A, Pepe F V, Facchi P, Pascazio S, and Salerno M 2015 Phys. Rev. A 92 013639
[12] Chai X, Lao D, Fujimoto K, Hamazaki R, Ueda M, and Raman C 2020 Phys. Rev. Lett. 125 030402
[13] Zhang X F, Hu X H, Liu X X, and Liu W M 2009 Phys. Rev. A 79 033630
[14] Rajendran S, Muruganandamb P, and Lakshmanana M 2010 Physica D 239 366
[15] Atre R, Panigrahi P K, and Agarwal G S 2006 Phys. Rev. E 73 056611
[16] Yan M, DeSalvo B J, Ramachandhran B, Pu H, and Killian T C 2013 Phys. Rev. Lett. 110 123201
[17] Shen Y J, Gao Y T, Zuo D W, Sun Y H, Feng Y J, and Xue L 2014 Phys. Rev. E 89 062915
[18] Zhong Y, Triki H, and Zhou Q 2023 Commun. Theor. Phys. 75 025003
[19] Qi Z Q, Zhang Z, and Li B 2021 Chin. Phys. Lett. 38 060501
[20] Li J C, Chen J C, and Li B 2022 Nonlinear Dyn. 107 781
[21] Jiang L, Li X, and Li B 2022 Phys. Scr. 97 115201
[22] Serkin V N, Hasegawa A, and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[23] Yang Z Y, Zhao L C, Zhang T, Feng X Q, and Yue R H 2011 Phys. Rev. E 83 066602
[24] Ieda J, Miyakawa T, and Wadati M 2004 Phys. Rev. Lett. 93 194102
[25] Serkin V N, Hasegawa A, and Belyaeva T L 2010 Phys. Rev. A 81 023610
[26] Janis J, Banks M, and Bigelow N P 2005 Phys. Rev. A 71 013422
[27] Che W J, Chen S C, Liu C, Zhao L C, and Akhmediev N 2022 Phys. Rev. A 105 043526
[28] Liu C, Chen S C, Yao X K, and Akhmediev N 2022 Physica D 433 133192
[29] Liu C, Chen S C, Yao X K, and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[30] Ding C C, Zhou Q, Xu S L, Sun Y Z, Liu W J, Mihalache D, and Malomed B A 2023 Chaos Solitons & Fractals 169 113247
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 040501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 040501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 040501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 040501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 040501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 040501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 040501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 040501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 040501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 040501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 040501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 040501
Viewed
Full text


Abstract