Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 040301    DOI: 10.1088/0256-307X/40/4/040301
GENERAL |
Extension of Linear Response Regime in Weak-Value Amplification Technique
Manchao Zhang1,2,3, Jie Zhang1,2,3, Wenbo Su1,2,3, Xueying Yang1,2,3, Chunwang Wu1,2,3, Yi Xie1,2,3, Wei Wu1,2,3, and Pingxing Chen1,2,3*
1Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
2Hunan Key Laboratory of Mechanism and Technology of Quantum Information, Changsha 410073, China
3Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Manchao Zhang, Jie Zhang, Wenbo Su et al  2023 Chin. Phys. Lett. 40 040301
Download: PDF(1117KB)   PDF(mobile)(1129KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The achievable precision of parameter estimation plays a significant role in evaluating a strategy of metrology. In practice, one may employ approximations in a theoretical model development for simplicity, which, however, will cause systematic error and lead to a loss of precision. We derive the error of maximum likelihood estimation in the weak-value amplification technique where the linear approximation of the coupling parameter is used. We show that this error is positively related to the coupling strength and can be effectively suppressed by improving the Fisher information. Considering the roles played by weak values and initial meter states in the weak-value amplification, we also point out that the estimation error can be decreased by several orders of magnitude by averaging the estimations resulted from different initial meter states or weak values. These results are finally illustrated in a numerical example where an extended linear response regime to the parameter is observed.
Received: 01 February 2023      Published: 02 April 2023
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/040301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Manchao Zhang
Jie Zhang
Wenbo Su
Xueying Yang
Chunwang Wu
Yi Xie
Wei Wu
and Pingxing Chen
[1] Pezzè L and Smerzi A 2018 Rev. Mod. Phys. 90 035005
[2] Tóth G and Apellaniz I 2014 J. Phys. A 47 424006
[3] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[4] Zhang L J, Datta A, and Walmsley I A 2015 Phys. Rev. Lett. 114 210801
[5] Aharonov Y, Albert D Z, and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[6] Aharonov Y and Vaidman L 1990 Phys. Rev. A 41 11
[7] Hosten O and Kwiat P 2008 Science 319 787
[8] Dressel J, Malik M, Miatto F M, Jordan A N, and Boyd R W 2014 Rev. Mod. Phys. 86 307
[9] Zhang J, Wu C W, Xie Y, Wu W, and Chen P X 2021 Chin. Phys. B 30 033201
[10] Dixon P B, Starling D J, Jordan A N, and Howell J C 2009 Phys. Rev. Lett. 102 173601
[11] Wu C W, Zhang J, Xie Y, Ou B Q, Chen T, Wu W, and Chen P X 2019 Phys. Rev. A 100 062111
[12] Chen G, Aharon N, Sun Y N, Zhang Z H, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F, and Guo G C 2018 Nat. Commun. 9 93
[13] Fang C, Huang J Z, Yu Y, Li Q, and Zeng G 2016 J. Phys. B 49 175501
[14] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, and Guo G C 2013 Phys. Rev. Lett. 111 033604
[15] Li H J, Huang J Z, Yu Y et al. 2018 Appl. Phys. Lett. 112 231901
[16] Egan P and Stone J A 2012 Opt. Lett. 37 4991
[17] Viza G I, Martinez-Rincon J, Howland G A, Frostig H, Shomroni I, Dayan B, and Howell J C 2013 Opt. Lett. 38 2949
[18] Xu L, Liu Z, Datta A, Knee G C, Lundeen J S, Lu Y Q, and Zhang L 2020 Phys. Rev. Lett. 125 080501
[19] Kedem Y 2012 Phys. Rev. A 85 060102(R)
[20] Jordan A N, Martinez-Rincon J, and Howell J C 2014 Phys. Rev. X 4 011031
[21] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032
[22] Wu S J and Li Y 2011 Phys. Rev. A 83 052106
[23] Koike T and Tanaka S 2011 Phys. Rev. A 84 062106
[24] Turek Y, Kobayashi H, Akutsu T, Sun C P, and Shikano Y 2015 New J. Phys. 17 083029
[25] Nakamura K, Nishizawa A, and Fujimoto M K 2012 Phys. Rev. A 85 012113
[26] Pang S S, Alonso J R G, Brun T A, and Jordan A N 2016 Phys. Rev. A 94 012329
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 040301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 040301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 040301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 040301
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 040301
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 040301
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 040301
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 040301
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 040301
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 040301
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 040301
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 040301
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 040301
Viewed
Full text


Abstract