Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 038101    DOI: 10.1088/0256-307X/40/3/038101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection
Sai Jiang1*, Lichao Peng1, Xiaosong Du1, Qinyong Dai2, Jianhang Guo2, Jianhui Gu1, Jian Su1, Ding Gu1, Qijing Wang2, Huafei Guo1, Jianhua Qiu1, and Yun Li2*
1School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
2National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Sai Jiang, Lichao Peng, Xiaosong Du et al  2023 Chin. Phys. Lett. 40 038101
Download: PDF(6183KB)   PDF(mobile)(7027KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricated monolayer n-type two-dimensional crystalline semiconducting films with millimeter-sized areas and remarkable morphological uniformity using an antisolvent-confined spin-coating method. The antisolvent can cause a downstream Marangoni flow, which improves the film morphologies. The deposited crystalline monolayer films exhibit excellent thermal stabilities after annealing, which reveals the annealing-induced enhancement of crystallinity. The transistors based on the n-type monolayer crystalline films show linear output characteristics and superior electron mobilities. The improved charge injection between monolayer films and Au electrodes results from the energy level shift as the films decrease to the monolayer, which leads to a lower injection barrier. This work demonstrates a promising method for fabricating air-stable, low-cost, high-performance, and large-area organic electronics.
Received: 14 December 2022      Published: 08 March 2023
PACS:  81.05.Fb (Organic semiconductors)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/038101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/038101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sai Jiang
Lichao Peng
Xiaosong Du
Qinyong Dai
Jianhang Guo
Jianhui Gu
Jian Su
Ding Gu
Qijing Wang
Huafei Guo
Jianhua Qiu
and Yun Li
[1] Wang C L, Dong H L, Jiang L, and Hu W P 2018 Chem. Soc. Rev. 47 422
[2] Choi Y, Oh S, Qian C, Park J H, and Cho J H 2020 Nat. Commun. 11 4595
[3] Rivnay J, Inal S, Salleo A, Owens R M, Berggren M, and Malliaras G G 2018 Nat. Rev. Mater. 3 17086
[4] Jia X J, Fuentes-Hernandez C, Wang C Y, Park Y, and Kippelen B 2018 Sci. Adv. 4 eaao1705
[5] Zhang Y H, Qiao J S, Gao S, Hu F R, He D W, Wu B, Yang Z Y, Xu B C, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu J B, and Wang X 2016 Phys. Rev. Lett. 116 016602
[6] Jiang S, Dai Q, Guo J, and Li Y 2022 J. Semicond. 43 041101
[7] Calhoun M F, Sanchez J, Olaya D, Gershenson M E, and Podzorov V 2008 Nat. Mater. 7 84
[8] Li L G, Gao P, Schuermann K C, Ostendorp S, Wang W C, Du C, Lei Y, Fuchs H, De Cola L, Müllen K, and Chi L 2010 J. Am. Chem. Soc. 132 8807
[9] Yang J L and Yan D H 2009 Chem. Soc. Rev. 38 2634
[10] Shi Y J, Jiang L, Liu J, Tu Z, Hu Y, Wu Q, Yi Y, Gann E, McNeill C R, Li H, Hu W, Zhu D, and Sirringhaus H 2018 Nat. Commun. 9 2933
[11] Surgailis J, Savva A, Druet V, Paulsen B D, Wu R, Hamidi-Sakr A, Ohayon D, Nikiforidis G, Chen X, McCulloch I, Rivnay J, and Inal S 2021 Adv. Funct. Mater. 31 2010165
[12] Un H I, Cheng P, Lei T, Yang C Y, Wang J Y, and Pei J 2018 Adv. Mater. 30 1800017
[13] Guo J H, Jiang S, Pei M J, Xiao Y L, Zhang B W, Wang Q J, Zhu Y, Wang H Y, Jie J S, Wang X R, Shi Y, and Li Y 2020 Adv. Electron. Mater. 6 2000062
[14] He D W, Qiao J S, Zhang L L, Wang J Y, Lan T, Qian J, Li Y, Shi Y, Chai Y, Lan W, Ono L K, Qi Y B, Xu J B, Ji W, and Wang X R 2017 Sci. Adv. 3 e1701186
[15] Hao Z Q, Wang H Y, Jiang S, Qian J, Xu X, Li Y T, Pei M, Zhang B, Guo J, Zhao H, Chen J, Tong Y, Wang J, Wang X, Shi Y, and Li Y 2022 Adv. Sci. 9 2103494
[16] Okamoto T, Kumagai S, Fukuzaki E, Ishii H, Watanabe G, Niitsu N, Annaka T, Yamagishi M, Tani Y, Sugiura H, Watanabe T, Watanabe S, and Takeya J 2020 Sci. Adv. 6 eaaz0632
[17] Wang C, Ren X C, Xu C H, Fu B, Wang R, Zhang X, Li R, Li H, Dong H, Zhen Y, Lei S, Jiang L, and Hu W 2018 Adv. Mater. 30 1706260
[18] Usta H, Facchetti A, and Marks T J 2011 Acc. Chem. Res. 44 501
[19] Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, and Takeya J 2011 Adv. Mater. 23 3681
[20] Rekab W, Stoeckel M A, Gemayel M E, Gobbi M, Orgiu E, and Samorì P 2016 ACS Appl. Mater. & Interfaces 8 9829
[21] Fabiano S, Wang H, Piliego C, Jaye C, Fischer D A, Chen Z, Pignataro B, Facchetti A, Loo Y L, and Loi M A 2011 Adv. Funct. Mater. 21 4479
[22] Wang Q J, Juarez-Perez E J, Jiang S, Qiu L, Ono L K, Sasaki T, Wang X, Shi Y, Zheng Y, Qi Y, and Li Y 2018 J. Phys. Chem. Lett. 9 1318
[23] Xu C H, He P, Liu J, Cui A J, Dong H L, Zhen Y G, Chen W, and Hu W P 2016 Angew. Chem. Int. Ed. 55 9519
[24] Gu X D, Shaw L, Gu K, Toney M F, and Bao Z N 2018 Nat. Commun. 9 534
[25] Lee S B, Lee S, Kim D G, Kim S H, Kang B, and Cho K 2021 Adv. Funct. Mater. 31 2100196
[26] Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Varela M, Hauke F, and Hirsch A 2016 Angew. Chem. 128 14777
[27] Łapiński A, Graja A, Olejniczak I, Bogucki A, Połomska M, Baffreau J, Perrin L, Leroy-Lhez S, and Hudhomme P 2006 Mol. Cryst. Liq. Cryst. 447 87
[28] Rao V J, Matthiesen M, Goetz K P, Huck C, Yim C, Siris R, Han J, Hahn S, Bunz U H F, Dreuw A, Duesberg G S, Pucci A, and Zaumseil J 2020 J. Phys. Chem. C 124 5331
[29] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, and Duan X 2018 Nature 557 696
[30] Hulea I N, Fratini S, Xie H, Mulder C L, Iossad N N, Rastelli G, Ciuchi S, and Morpurgo A F 2006 Nat. Mater. 5 982
[31] Jiang S, Qian J, Wang Q, Duan Y, Guo J, Zhang B, Sun H, Wang X, Liu C, Shi Y, and Li Y 2020 Adv. Electron. Mater. 6 2000136
[32] Yi H T, Chen Z H, Facchetti A, and Podzorov V 2016 Adv. Funct. Mater. 26 2365
[33] Ringk A, Li X, Gholamrezaie F, Smits E C P, Neuhold A, Moser A, Van Der Marel C, Gelinck G H, Resel R, De Leeuw D M, and Strohriegl P 2013 Adv. Funct. Mater. 23 2016
[34] Stoeckel M, Olivier Y, Gobbi M, Dudenko D, Lemaur V, Zbiri M, Guilbert A A Y, D'Avino G, Liscio F, Migliori A, Ortolani L, Demitri N, Jin X, Jeong Y, Liscio A, Nardi M, Pasquali L, Razzari L, Beljonne D, Samorì P, and Orgiu E 2021 Adv. Mater. 33 2007870
[35] Hill I G and Kahn A 1998 J. Appl. Phys. 84 5583
[36] Yun D J, Yun Y, Lee J, Kim J Y, Chung J G, Kim S H, Kim Y S, Heo S, Park J I, Kim K H, Kwon Y N, and Chung J W 2020 ACS Appl. Mater. & Interfaces 12 50628
[37] Chen J J, Tang W H, Xin L P, and Shi Q 2011 Appl. Phys. A 102 213
[38] Chen S P, Chen Y S, and Hsieh G W 2017 IEEE J. Electron Devices Soc. 5 367
Related articles from Frontiers Journals
[1] M. S. Zaini, M. A. Mohd Sarjidan, W. H. Abd. Majid. Determination of Traps' Density of State in OLEDs from Current–Voltage Analysis[J]. Chin. Phys. Lett., 2016, 33(01): 038101
[2] WANG Yong-Fan, QU Feng-Dong, ZHOU Jing-Ran, GUO Wen-Bin, DONG Wei, LIU Cai-Xia, RUAN Sheng-Ping. High Responsivity Organic Ultraviolet Photodetector Based on NPB Donor and C60 Acceptor[J]. Chin. Phys. Lett., 2015, 32(08): 038101
[3] Bushra Mohamed Omer. Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study[J]. Chin. Phys. Lett., 2015, 32(08): 038101
[4] ZHAO Yu-Feng, LI Xin-Hua, SHI Tong-Fei, WANG Wen-Bo, ZHOU Bu-Kang, DUAN Hua-Hua, ZENG Xue-Song, LI Ning, WANG Yu-Qi. Synthesis and Photoluminescence Properties of GaAs Nanowires Grown on Fused Quartz Substrates[J]. Chin. Phys. Lett., 2014, 31(05): 038101
[5] ZHENG Rui, HUANG Wen-Bo, XU Wei, CAO Yong. Analysis of Intrinsic Degradation Mechanism in Organic Light-Emitting Diodes by Impedance Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(2): 038101
[6] YANG De-Zhi, SUN Heng-Da, CHEN Jiang-Shan, MA Dong-Ge. High Current Transfer Ratio Organic Optocoupler Based on Tandem Organic Light-Emitting Diode as the Input Unit[J]. Chin. Phys. Lett., 2012, 29(11): 038101
[7] CHEN Zheng, DENG Zhen-Bo, ZHOU Mao-Yang, LÜ Zhao-Yue, DU Hai-Liang, ZOU Ye, YIN Yue-Hong, LUN Jian-Chao. A Poly-(3-Hexylthiophene) (P3HT)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Bilayer Organic Solar Cell Fabricated by Airbrush Spray Deposition[J]. Chin. Phys. Lett., 2012, 29(7): 038101
[8] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 038101
[9] Jaya Lohani, Manoj Gaur, Upendra Kumar, V. R. Balakrishnan, Harsh, S. V. Eswaran. Electrical Studies on Pentacene Thin Film Transistors with Different Channel Widths[J]. Chin. Phys. Lett., 2010, 27(4): 038101
Viewed
Full text


Abstract