CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection |
Sai Jiang1*, Lichao Peng1, Xiaosong Du1, Qinyong Dai2, Jianhang Guo2, Jianhui Gu1, Jian Su1, Ding Gu1, Qijing Wang2, Huafei Guo1, Jianhua Qiu1, and Yun Li2* |
1School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China 2National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Sai Jiang, Lichao Peng, Xiaosong Du et al 2023 Chin. Phys. Lett. 40 038101 |
|
|
Abstract We fabricated monolayer n-type two-dimensional crystalline semiconducting films with millimeter-sized areas and remarkable morphological uniformity using an antisolvent-confined spin-coating method. The antisolvent can cause a downstream Marangoni flow, which improves the film morphologies. The deposited crystalline monolayer films exhibit excellent thermal stabilities after annealing, which reveals the annealing-induced enhancement of crystallinity. The transistors based on the n-type monolayer crystalline films show linear output characteristics and superior electron mobilities. The improved charge injection between monolayer films and Au electrodes results from the energy level shift as the films decrease to the monolayer, which leads to a lower injection barrier. This work demonstrates a promising method for fabricating air-stable, low-cost, high-performance, and large-area organic electronics.
|
|
Received: 14 December 2022
Published: 08 March 2023
|
|
PACS: |
81.05.Fb
|
(Organic semiconductors)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
|
|
|
[1] | Wang C L, Dong H L, Jiang L, and Hu W P 2018 Chem. Soc. Rev. 47 422 |
[2] | Choi Y, Oh S, Qian C, Park J H, and Cho J H 2020 Nat. Commun. 11 4595 |
[3] | Rivnay J, Inal S, Salleo A, Owens R M, Berggren M, and Malliaras G G 2018 Nat. Rev. Mater. 3 17086 |
[4] | Jia X J, Fuentes-Hernandez C, Wang C Y, Park Y, and Kippelen B 2018 Sci. Adv. 4 eaao1705 |
[5] | Zhang Y H, Qiao J S, Gao S, Hu F R, He D W, Wu B, Yang Z Y, Xu B C, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu J B, and Wang X 2016 Phys. Rev. Lett. 116 016602 |
[6] | Jiang S, Dai Q, Guo J, and Li Y 2022 J. Semicond. 43 041101 |
[7] | Calhoun M F, Sanchez J, Olaya D, Gershenson M E, and Podzorov V 2008 Nat. Mater. 7 84 |
[8] | Li L G, Gao P, Schuermann K C, Ostendorp S, Wang W C, Du C, Lei Y, Fuchs H, De Cola L, Müllen K, and Chi L 2010 J. Am. Chem. Soc. 132 8807 |
[9] | Yang J L and Yan D H 2009 Chem. Soc. Rev. 38 2634 |
[10] | Shi Y J, Jiang L, Liu J, Tu Z, Hu Y, Wu Q, Yi Y, Gann E, McNeill C R, Li H, Hu W, Zhu D, and Sirringhaus H 2018 Nat. Commun. 9 2933 |
[11] | Surgailis J, Savva A, Druet V, Paulsen B D, Wu R, Hamidi-Sakr A, Ohayon D, Nikiforidis G, Chen X, McCulloch I, Rivnay J, and Inal S 2021 Adv. Funct. Mater. 31 2010165 |
[12] | Un H I, Cheng P, Lei T, Yang C Y, Wang J Y, and Pei J 2018 Adv. Mater. 30 1800017 |
[13] | Guo J H, Jiang S, Pei M J, Xiao Y L, Zhang B W, Wang Q J, Zhu Y, Wang H Y, Jie J S, Wang X R, Shi Y, and Li Y 2020 Adv. Electron. Mater. 6 2000062 |
[14] | He D W, Qiao J S, Zhang L L, Wang J Y, Lan T, Qian J, Li Y, Shi Y, Chai Y, Lan W, Ono L K, Qi Y B, Xu J B, Ji W, and Wang X R 2017 Sci. Adv. 3 e1701186 |
[15] | Hao Z Q, Wang H Y, Jiang S, Qian J, Xu X, Li Y T, Pei M, Zhang B, Guo J, Zhao H, Chen J, Tong Y, Wang J, Wang X, Shi Y, and Li Y 2022 Adv. Sci. 9 2103494 |
[16] | Okamoto T, Kumagai S, Fukuzaki E, Ishii H, Watanabe G, Niitsu N, Annaka T, Yamagishi M, Tani Y, Sugiura H, Watanabe T, Watanabe S, and Takeya J 2020 Sci. Adv. 6 eaaz0632 |
[17] | Wang C, Ren X C, Xu C H, Fu B, Wang R, Zhang X, Li R, Li H, Dong H, Zhen Y, Lei S, Jiang L, and Hu W 2018 Adv. Mater. 30 1706260 |
[18] | Usta H, Facchetti A, and Marks T J 2011 Acc. Chem. Res. 44 501 |
[19] | Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, and Takeya J 2011 Adv. Mater. 23 3681 |
[20] | Rekab W, Stoeckel M A, Gemayel M E, Gobbi M, Orgiu E, and Samorì P 2016 ACS Appl. Mater. & Interfaces 8 9829 |
[21] | Fabiano S, Wang H, Piliego C, Jaye C, Fischer D A, Chen Z, Pignataro B, Facchetti A, Loo Y L, and Loi M A 2011 Adv. Funct. Mater. 21 4479 |
[22] | Wang Q J, Juarez-Perez E J, Jiang S, Qiu L, Ono L K, Sasaki T, Wang X, Shi Y, Zheng Y, Qi Y, and Li Y 2018 J. Phys. Chem. Lett. 9 1318 |
[23] | Xu C H, He P, Liu J, Cui A J, Dong H L, Zhen Y G, Chen W, and Hu W P 2016 Angew. Chem. Int. Ed. 55 9519 |
[24] | Gu X D, Shaw L, Gu K, Toney M F, and Bao Z N 2018 Nat. Commun. 9 534 |
[25] | Lee S B, Lee S, Kim D G, Kim S H, Kang B, and Cho K 2021 Adv. Funct. Mater. 31 2100196 |
[26] | Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Varela M, Hauke F, and Hirsch A 2016 Angew. Chem. 128 14777 |
[27] | Łapiński A, Graja A, Olejniczak I, Bogucki A, Połomska M, Baffreau J, Perrin L, Leroy-Lhez S, and Hudhomme P 2006 Mol. Cryst. Liq. Cryst. 447 87 |
[28] | Rao V J, Matthiesen M, Goetz K P, Huck C, Yim C, Siris R, Han J, Hahn S, Bunz U H F, Dreuw A, Duesberg G S, Pucci A, and Zaumseil J 2020 J. Phys. Chem. C 124 5331 |
[29] | Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, and Duan X 2018 Nature 557 696 |
[30] | Hulea I N, Fratini S, Xie H, Mulder C L, Iossad N N, Rastelli G, Ciuchi S, and Morpurgo A F 2006 Nat. Mater. 5 982 |
[31] | Jiang S, Qian J, Wang Q, Duan Y, Guo J, Zhang B, Sun H, Wang X, Liu C, Shi Y, and Li Y 2020 Adv. Electron. Mater. 6 2000136 |
[32] | Yi H T, Chen Z H, Facchetti A, and Podzorov V 2016 Adv. Funct. Mater. 26 2365 |
[33] | Ringk A, Li X, Gholamrezaie F, Smits E C P, Neuhold A, Moser A, Van Der Marel C, Gelinck G H, Resel R, De Leeuw D M, and Strohriegl P 2013 Adv. Funct. Mater. 23 2016 |
[34] | Stoeckel M, Olivier Y, Gobbi M, Dudenko D, Lemaur V, Zbiri M, Guilbert A A Y, D'Avino G, Liscio F, Migliori A, Ortolani L, Demitri N, Jin X, Jeong Y, Liscio A, Nardi M, Pasquali L, Razzari L, Beljonne D, Samorì P, and Orgiu E 2021 Adv. Mater. 33 2007870 |
[35] | Hill I G and Kahn A 1998 J. Appl. Phys. 84 5583 |
[36] | Yun D J, Yun Y, Lee J, Kim J Y, Chung J G, Kim S H, Kim Y S, Heo S, Park J I, Kim K H, Kwon Y N, and Chung J W 2020 ACS Appl. Mater. & Interfaces 12 50628 |
[37] | Chen J J, Tang W H, Xin L P, and Shi Q 2011 Appl. Phys. A 102 213 |
[38] | Chen S P, Chen Y S, and Hsieh G W 2017 IEEE J. Electron Devices Soc. 5 367 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|