CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls |
Qirui Cui1,2, Jinghua Liang2, Yingmei Zhu2, Xiong Yao2, and Hongxin Yang1,2* |
1National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
|
|
Cite this article: |
Qirui Cui, Jinghua Liang, Yingmei Zhu et al 2023 Chin. Phys. Lett. 40 037502 |
|
|
Abstract We report the interplay between two different topological phases in condensed matter physics, the magnetic chiral domain wall (DW), and the quantum anomalous Hall (QAH) effect. It is shown that the chiral DW driven by Dzyaloshinskii–Moriya interaction can divide the uniform domain into several zones where the neighboring zone possesses opposite quantized Hall conductance. The separated domain with a chiral edge state (CES) can be continuously modified by external magnetic field-induced domain expansion and thermal fluctuation, which gives rise to the reconfigurable QAH effect. More interestingly, we show that the position of CES can be tuned by spin current driven chiral DW motion. Several two-dimensional magnets with high Curie temperature and large topological band gaps are proposed for realizing these phenomena. The present work thus reveals the possibility of chiral DW controllable QAH effects.
|
|
Received: 17 December 2022
Editors' Suggestion
Published: 24 February 2023
|
|
PACS: |
75.60.Ch
|
(Domain walls and domain structure)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
|
|
|
[1] | Parkin S S P, Hayashi M, and Thomas L 2008 Science 320 190 |
[2] | Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, and Gambardella P 2011 Nature 476 189 |
[3] | Ryu K S, Thomas L, Yang S H, and Parkin S 2013 Nat. Nanotechnol. 8 527 |
[4] | Emori S, Bauer U, Ahn S M, Martinez E, and Beach G S D 2013 Nat. Mater. 12 611 |
[5] | Dao T P, Müller M, Luo Z, Baumgartner M, Hrabec A, Heyderman L J, and Gambardella P 2019 Nano Lett. 19 5930 |
[6] | Luo Z C, Hrabec A, Dao T P, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, and Heyderman L J 2020 Nature 579 214 |
[7] | Kawahara T, Ito K, Takemura R, and Ohno H 2012 Microelectron. Reliab. 52 613 |
[8] | Manchon A, Železný J, Miron I M T, Jungwirth T, Sinova J, Thiaville A, Garello K, and Gambardella P 2019 Rev. Mod. Phys. 91 035004 |
[9] | Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, and Pan F 2021 Prog. Mater. Sci. 118 100761 |
[10] | Dzialoshinskii I E 1957 Sov. Phys.-JETP 5 1259 |
[11] | Moriya T 1960 Phys. Rev. 120 91 |
[12] | Fert A and Levy P M 1980 Phys. Rev. Lett. 44 1538 |
[13] | Thiaville A, Rohart S, Jué E, Cros V, and Fert A 2012 Europhys. Lett. 100 57002 |
[14] | Yang H X, Thiaville A, Rohart S, Fert A, and Chshiev M 2015 Phys. Rev. Lett. 115 267210 |
[15] | Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, and Fang Z 2010 Science 329 61 |
[16] | Xu G, Weng H, Wang Z, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806 |
[17] | Chang C Z, Zhang J, Feng X, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science 340 167 |
[18] | Qiao Z H, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H, and Niu Q 2014 Phys. Rev. Lett. 112 116404 |
[19] | Kou X F, Guo S T, Fan Y, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Murata K, Tang J S, Wang Y, He L, Lee T K, Lee W L, and Wang K L 2014 Phys. Rev. Lett. 113 137201 |
[20] | Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, and Chang C Z 2018 Phys. Rev. Lett. 120 056801 |
[21] | Qi X L, Hughes T L, and Zhang S C 2010 Phys. Rev. B 82 184516 |
[22] | Lian B, Sun X Q, Vaezi A, Qi X L, and Zhang S C 2018 Proc. Natl. Acad. Sci. USA 115 10938 |
[23] | Lado J L and Sigrist M 2018 Phys. Rev. Lett. 121 037002 |
[24] | Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, and Chang C Z 2020 Science 367 64 |
[25] | Haldane F D M 1988 Phys. Rev. Lett. 61 2015 |
[26] | Ou Y B, Liu C, Jiang G Y, Feng Y, Zhao D Y, Wu W, Wang X X, Li W, Song C L, Wang L L, Wang W B, Wu W D, Wang Y Y, He K, Ma X C, and Xue Q K 2017 Adv. Mater. 30 1703062 |
[27] | Li Y, Li J, Li Y, Ye M, Zheng F, Zhang Z, Fu J, Duan W, and Xu Y 2020 Phys. Rev. Lett. 125 086401 |
[28] | Deng Y J, Yu Y J, Shi M Z, Wang J, Chen X H, and Zhang Y B 2020 Science 367 895 |
[29] | Zhao Y F, Zhang R, Mei R, Zhou L J, Yi H, Zhang Y Q, Yu J, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X, and Chang C Z 2020 Nature 588 419 |
[30] | Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, and Wang J 2020 Natl. Sci. Rev. 7 1280 |
[31] | Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, and Tokura Y 2015 Appl. Phys. Lett. 107 182401 |
[32] | Zhang D Q, Shi M J, Zhu T H, Xing D Y, Zhang H J, and Wang J 2019 Phys. Rev. Lett. 122 206401 |
[33] | Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F, and Tokura Y 2017 Science 358 1311 |
[34] | Tokura Y, Yasuda K, and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 |
[35] | Qi X L, Hughes T, and Zhang S C 2008 Nat. Phys. 4 273 |
[36] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[37] | Upadhyaya P and Tserkovnyak Y 2016 Phys. Rev. B 94 020411 |
[38] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[39] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[40] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 |
[41] | Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298 |
[42] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[43] | Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[44] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[45] | Wu Q S, Zhang S N, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[46] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[47] | Evans R F, Fan W J, Chureemart P, Ostler T A, Ellis M O A, and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202 |
[48] | See the Supplemental Information for (1) computational details; (2) structural and magnetic parameters of VSe${_2}$ and Fe${_2}X$I ($X$ = Cl, Br); (3) crystal structure of VSe${_2}$; (4) phonon dispersions; (5) strain-dependent basic magnetic parameters and (6) orbit-resolved band structures of VSe${_2}$; (7) snapshots of fully relaxed spin configurations of VSe${_2}$ nanoribbon after injecting 0.1 ns spin current. The current density varies from 0 to $1.4\times10^{12}$ A/m${^2}$; (8) crystal structure, spin configurations and topological edge states, (9) temperature-dependent magnetization and heat capacity, and (10) magnetization orientation-controlled band structures of Fe${_2}X$I ($X$ = Cl, Br), which includes Refs. [14,39,51,57-66] |
[49] | Cui Q R, Zhu Y M, Ga Y L, Liang J H, Li P, Yu D X, Cui P, and Yang H X 2022 Nano Lett. 22 2334 |
[50] | Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K S, Ezawa M, Kawasaki M, Nagaosa N, and Tokura Y 2016 Nat. Phys. 12 555 |
[51] | Wang W B, Daniels M W, Liao Z L, Zhao Y F, Wang J, Koster G, Rijnders G, Chang C Z, Xiao D, and Wu W D 2019 Nat. Mater. 18 1054 |
[52] | Jiang J, Xiao D, Wang F, Shin J H, Andreoli D, Zhang J, Xiao R, Zhao Y F, Kayyalha M, Zhang L, Wang K, Zang J, Liu C, Samarth N, Chan M H W, and Chang C Z 2020 Nat. Mater. 19 732 |
[53] | Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J S, Hong D, Alahmed L, He L, Zhang R, Xu Y, Zhang S, Li P, and Bian G 2021 ACS Nano 15 15710 |
[54] | Li Y, Xu S, Wang J, Wang C, Yang B, Lin H, Duan W, and Huang B 2022 Proc. Natl. Acad. Sci. USA 119 e2122952119 |
[55] | Jiang J, Liu X, Li R, and Mi W 2021 Appl. Phys. Lett. 119 072401 |
[56] | Safeer C K, Ontoso N, Ingla-Aynes J, Herling F, Pham V T, Kurzmann A, Ensslin K, Chuvilin A, Robredo I, Vergniory M G, de Juan F, Hueso L E, Calvo M R, and Casanova F 2019 Nano Lett. 19 8758 |
[57] | Song P, Hsu C H, Vignale G, Zhao M, Liu J, Deng Y, Fu W, Liu Y, Zhang Y, Lin H, Pereira V M, and Loh K P 2020 Nat. Mater. 19 292 |
[58] | Xu H J, Wei J W, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C, Wang X, Guang Y, Wei H, Peng Y, Jiang W, Yu G, and Han X 2020 Adv. Mater. 32 2000513 |
[59] | Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, and Li L J 2016 Nano Lett. 16 7514 |
[60] | MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, and Ralph D C 2017 Nat. Phys. 13 300 |
[61] | Guo S D, Mu W Q, Xiao X B, and Liu B G 2021 Nanoscale 13 12956 |
[62] | Zhang Z Q, Chen C Z, Wu Y J, Jiang H, Liu J W, Sun Q F, and Xie X C 2021 Phys. Rev. B 103 075434 |
[63] | Sass P M, Ge W B, Yan J Q, Obeysekera D, Yang J J, and Wu W D 2020 Nano Lett. 20 2609 |
[64] | Ge W B, Kim J, Chan Y T, Vanderbilt D, Yan J Q, and Wu W D 2022 Phys. Rev. Lett. 129 107204 |
[65] | Li S, Gong M, Cheng S, Jiang H, and Xie X C 2022 arXiv:2207.09186 [cond-mat.mes-hall] |
[66] | Liang W, Hou T, Zeng J, Liu Z, Han Y, and Qiao Z 2022 arXiv:2207.09942 [cond-mat.mes-hall] |
[67] | Yang H, Liang J, and Cui Q 2023 Nat. Rev. Phys. 5 43 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|