Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 037102    DOI: 10.1088/0256-307X/40/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$
Yuan Wang1†, Yixuan Liu1†, Zhanyang Hao1†, Wenjing Cheng1†, Junze Deng2†, Yuxin Wang2, Yuhao Gu2, Xiao-Ming Ma1, Hongtao Rong1, Fayuan Zhang1, Shu Guo1, Chengcheng Zhang1, Zhicheng Jiang3, Yichen Yang3, Wanling Liu3, Qi Jiang3, Zhengtai Liu3, Mao Ye3, Dawei Shen3, Yi Liu4, Shengtao Cui4, Le Wang1, Cai Liu1, Junhao Lin1, Ying Liu1, Yongqing Cai1*, Jinlong Zhu1, Chaoyu Chen1*, and Jia-Wei Mei1*
1Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
4National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Cite this article:   
Yuan Wang, Yixuan Liu, Zhanyang Hao et al  2023 Chin. Phys. Lett. 40 037102
Download: PDF(7160KB)   PDF(mobile)(8271KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The simple kagome-lattice band structure possesses Dirac cones, flat band, and saddle point with van Hove singularities in the electronic density of states, facilitating the emergence of various electronic orders. Here we report a titanium-based kagome metal CsTi$_{3}$Bi$_{5}$ where titanium atoms form a kagome network, resembling its isostructural compound CsV$_{3}$Sb$_{5}$. Thermodynamic properties including the magnetization, resistance, and heat capacity reveal the conventional Fermi liquid behavior in the kagome metal CsTi$_{3}$Bi$_{5}$ and no signature of superconducting or charge density wave (CDW) transition anomaly down to 85 mK. Systematic angle-resolved photoemission spectroscopy measurements reveal multiple bands crossing the Fermi level, consistent with the first-principles calculations. The flat band formed by the destructive interference of hopping in the kagome lattice is observed directly. Compared to CsV$_{3}$Sb$_{5}$, the van Hove singularities are pushed far away above the Fermi level in CsTi$_{3}$Bi$_{5}$, in line with the absence of CDW. Furthermore, the first-principles calculations identify the nontrivial $\mathbb{Z}_2$ topological properties for those bands crossing the Fermi level, accompanied by several local band inversions. Our results suppose CsTi$_{3}$Bi$_{5}$ as a complementary platform to explore the superconductivity and nontrivial band topology.
Received: 06 January 2023      Editors' Suggestion Published: 02 March 2023
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.20.-6  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/037102       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/037102
[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[4] Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802
[5] Yu S L and Li J X 1952 Phys. Rev. B 85 144402
[6] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[7] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 1952 Phys. Rev. B 87 115135
[8] Ye L D, Kang M G, Liu J W et al. 2018 Nature 555 638
[9] Li M, Wang Q, Wang G et al. 2021 Nat. Commun. 12 3129
[10] Kang M G, Ye L D, Fang S et al. 2020 Nat. Mater. 19 163
[11] Kang M G, Fang S, Ye L D et al. 2020 Nat. Commun. 11 4004
[12] Yin J X, Ma W L, Cochran T A et al. 2020 Nature 583 533
[13] Liu E K, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125
[14] Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212
[15] Ortiz B R, Teicher S M L, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002
[16] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[17] Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403
[18] Yang S Y, Wang Y J, Ortiz B R et al. 2020 Sci. Adv. 6 eabb6003
[19] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 Phys. Rev. B 104 L041103
[20] Chen H, Yang H, Hu B et al. 2021 Nature 599 222
[21] Jiang Y X, Yin J X, Denner M M et al. 2021 Nat. Mater. 20 1353
[22] Nie L P, Sun K L, Ma W R et al. 2022 Nature 604 59
[23] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y, and Wen H H 2021 Nat. Commun. 12 6727
[24] Xu Y S, Ni Z L, Liu Y Z, Ortiz B R, Deng Q W, Wilson S D, Yan B H, Balents L, and Wu L 2022 Nat. Phys. 18 1470
[25] Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con]
[26] Mielke C, Das D, Yin J X et al. 2022 Nature 602 245
[27] Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384
[28] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K, and Liu M 2022 Chin. Phys. Lett. 39 047402
[29] Yang H, Zhao Z, Yi X W et al. 2022 arXiv:2209.03840 [cond-mat.supr-con]
[30] Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R, and Johrendt D 2022 Z. Naturforsch. B 77 757
[31] Li Y F, Wang E Y, Zhu X Y, and Wen H H 2017 Phys. Rev. B 95 024510
[32] Cai Y, Wang Y, Hao Z et al. 2021 arXiv:2109.12778 [cond-mat.supr-con]
[33] Hu Y, Teicher S M L, Ortiz B R et al. 2022 Sci. Bull. 67 495
[34] Yang J, Xie Y, Zhao Z et al. 2022 arXiv:2212.04447 [cond-mat.supr-con]
[35] Liu B, Kuang M, Luo Y et al. 2022 arXiv:2212.04460 [cond-mat.str-el]
[36] Jiang Z, Liu Z, Ma H et al. 2022 arXiv:2212.02399 [cond-mat.str-el]
[37] Hu Y, Le C, Zhao Z et al. 2022 arXiv:2212.07958 [cond-mat.supr-con]
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 037102
[2] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 037102
[3] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 037102
[4] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 037102
[5] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 037102
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 037102
[7] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 037102
[8] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 037102
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 037102
[10] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 037102
[11] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 037102
[12] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 037102
[13] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 037102
[14] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 037102
[15] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 037102
Viewed
Full text


Abstract