Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 036801    DOI: 10.1088/0256-307X/40/3/036801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effects of Localized Interface Phonons on Heat Conductivity in Ingredient Heterogeneous Solids
Mei Wu1,2†, Ruochen Shi1,2†, Ruishi Qi1,2,3†, Yuehui Li1,2, Tao Feng4,5, Bingyao Liu2, Jingyuan Yan2, Xiaomei Li1,2, Zhetong Liu2, Tao Wang2, Tongbo Wei4,5, Zhiqiang Liu4,5, Jinlong Du2, Ji Chen6,7, and Peng Gao1,2,7,8,9*
1International Center for Quantum Materials, Peking University, Beijing 100871, China
2Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
3Department of Physics, University of California at Berkeley, Berkeley 94720, USA
4Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
7Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
8Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
9Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Mei Wu, Ruochen Shi, Ruishi Qi et al  2023 Chin. Phys. Lett. 40 036801
Download: PDF(10929KB)   PDF(mobile)(11980KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Phonons are the primary heat carriers in non-metallic solids. In compositionally heterogeneous materials, the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder and strain fluctuations, while the effects of compositional fluctuation induced local phonon states are usually ignored. Here, by scanning transmission electron microscopy electron energy loss spectroscopy and sophisticated calculations, we identify the vibrational properties of ingredient-dependent interface phonon modes in Al$_{x}$Ga$_{1-x}$N and quantify their various contributions to the local interface thermal conductance. We demonstrate that atomic-scale compositional fluctuation has significant influence on the vibrational thermodynamic properties, highly affecting the mode ratio and vibrational amplitude of interface phonon modes and subsequently redistributing their modal contribution to the interface thermal conductance. Our work provides fundamental insights into understanding of local phonon-boundary interactions in nanoscale inhomogeneities, which reveal new opportunities for optimization of thermal properties via engineering ingredient distribution.
Received: 08 January 2023      Published: 09 March 2023
PACS:  68.37.Lp (Transmission electron microscopy (TEM))  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  68.35.Ja (Surface and interface dynamics and vibrations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/036801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/036801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mei Wu
Ruochen Shi
Ruishi Qi
Yuehui Li
Tao Feng
Bingyao Liu
Jingyuan Yan
Xiaomei Li
Zhetong Liu
Tao Wang
Tongbo Wei
Zhiqiang Liu
Jinlong Du
Ji Chen
and Peng Gao
[1] Venkatasubramanian R, Siivola E, Colpitts T, and O'quinn B 2001 Nature 413 597
[2]Rowe D M 2018 Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press)
[3] Waldrop M M 2016 Nature 530 144
[4] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M, and Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332
[5] Ren J and Zhu J X 2013 Phys. Rev. B 87 241412
[6] Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045
[7] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, and Ren Z 2008 Science 320 634
[8] Qian X, Zhou J, and Chen G 2021 Nat. Mater. 20 1188
[9] Tan G J, Zhao L D, and Kanatzidis M G 2016 Chem. Rev. 116 12123
[10] Su L Z, Wang D Y, Wang S, Qin B, Wang Y, Qin Y, Jin Y, Chang C, and Zhao L D 2022 Science 375 1385
[11] Vineis C J, Shakouri A, Majumdar A, and Kanatzidis M G 2010 Adv. Mater. 22 3970
[12] Bu Z L, Zhang X Y, Shan B, Tang J, Liu H X, Chen Z W, Lin S, Li W, and Pei Y 2021 Sci. Adv. 7 eabf2738
[13] Abeles B 1963 Phys. Rev. B 131 1906
[14] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, and Gogna P 2007 Adv. Mater. 19 1043
[15] Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis M G, and He J Q 2014 Nat. Commun. 5 4515
[16] Androulakis J, Lin C H, Kong H J, Uher C, Wu C I, Hogan T, Cook B A, Caillat T, Paraskevopoulos K M, and Kanatzidis M G 2007 J. Am. Chem. Soc. 129 9780
[17] Lian H, Kumar A, Ocelík V, Baas J, Momand J, Kooi B J, and Blake G R 2021 J. Mater. Chem. A 9 12340
[18] Lee S M, Cahill D G, and Venkatasubramanian R 1997 Appl. Phys. Lett. 70 2957
[19] Garg J and Chen G 2013 Phys. Rev. B 87 140302
[20] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[21] Zeiger P M and Rusz J 2021 Phys. Rev. B 104 104301
[22] Gordiz K and Henry A 2016 J. Appl. Phys. 119 015101
[23] Gordiz K and Henry A 2017 J. Appl. Phys. 121 025102
[24] English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, and Zhigilei L V 2012 Phys. Rev. B 85 035438
[25] Koh Y K, Cao Y, Cahill D G, and Jena D 2009 Adv. Funct. Mater. 19 610
[26] Schelling P K, Phillpot S R, and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[27] Giri A and Hopkins P E 2020 Adv. Funct. Mater. 30 1903857
[28] Krivanek O L, Lovejoy T C, Dellby N, Aoki T, Carpenter R W, Rez P, Soignard E, Zhu J, Batson P E, Lagos M J, Egerton R F, and Crozier P A 2014 Nature 514 209
[29] Hage F S, Radtke G, Kepaptsoglou D M, Lazzeri M, and Ramasse Q M 2020 Science 367 1124
[30] Senga R, Suenaga K, Barone P, Morishita S, Mauri F, and Pichler T 2019 Nature 573 247
[31] Lagos M J, Trugler A, Hohenester U, and Batson P E 2017 Nature 543 529
[32] Venkatraman K, Levin B D A, March K, Rez P, and Crozier P A 2019 Nat. Phys. 15 1237
[33] Rez P, Aoki T, March K, Gur D, Krivanek O L, Dellby N, Lovejoy T C, Wolf S G, and Cohen H 2016 Nat. Commun. 7 10945
[34] Qi R S, Shi R C, Li Y H, Sun Y W, Wu M, Li N, Du J L, Liu K H, Chen C, Chen J, Wang F, Yu D, Wang E G, and Gao P 2021 Nature 599 399
[35] Yan X X, Liu C Y, Gadre C A, Gu L, Aoki T, Lovejoy T C, Dellby N, Krivanek O L, Schlom D G, Wu R Q, and Pan X Q 2021 Nature 589 65
[36] Simon J, Protasenko V, Lian C, Xing H, and Jena D 2010 Science 327 60
[37] Chaudhuri R, Bader S J, Chen Z, Muller D A, Xing H G, and Jena D 2019 Science 365 1454
[38] Gadre C A, Yan X, Song Q, Li J, Gu L, Huyan H, Aoki T, Lee S W, Chen G, Wu R, and Pan X 2022 Nature 606 292
[39] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal C A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[40] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[41] Vanderbilt D 1990 Phys. Rev. B 41 7892
[42] Bungaro C, Rapcewicz K, and Bernholc J 2000 Phys. Rev. B 61 6720
[43] Gordiz K and Henry A 2016 Sci. Rep. 6 23139
[44] Qi R S, Li N, Du J, Shi R, Huang Y, Yang X, Liu L, Xu Z, Dai Q, Yu D, and Gao P 2021 Nat. Commun. 12 1179
[45] Salje E K, Alexe M, Kustov S, Weber M C, Schiemer J, Nataf G F, and Kreisel J 2016 Sci. Rep. 6 27193
[46] Gordiz K and Henry A 2015 New J. Phys. 17 103002
[47] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[48] Zhou X W, Jones R E, Kimmer C J, Duda J C, and Hopkins P E 2013 Phys. Rev. B 87 094303
[49] Seyf H R, Gordiz K, Deangelis F, and Henry A 2019 J. Appl. Phys. 125 081101
[50] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, and Graham S 2021 Nat. Commun. 12 6901
[51] Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, and Gao P 2022 Proc. Natl. Acad. Sci. USA 119 e2117027119
[52] Tian X Z, Yan X G, Varnavides G, Yuan Y K, Kim D S, Ciccarino C J, Polina A M Y L, Li L J, Narang P, Pan X Q, and Miao J W 2021 Sci. Adv. 7 eabi6699
Related articles from Frontiers Journals
[1] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 036801
[2] Qing Liao, Long Kang, Tong-Min Zhang, Hui-Ping Liu, Tao Wang, Xiao-Gang Li, Jin-Yu Li, Zhen Yang, and Bing-Sheng Li. Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation[J]. Chin. Phys. Lett., 2020, 37(7): 036801
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 036801
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 036801
[5] Bing-Sheng Li, Zhi-Guang Wang, Tie-Long Shen, Kong-Fang Wei, Yan-Bin Sheng, Tamakai Shibayama, Xi-Rui Lu, An-Li Xiong. Effects of Helium Implantation and Subsequent Electron Irradiation on Microstructures of Fe-11wt.% Cr Model Alloy[J]. Chin. Phys. Lett., 2019, 36(4): 036801
[6] Yue-Hui Li, Mei Wu, Rui-Shi Qi, Ning Li, Yuan-Wei Sun, Cheng-Long Shi, Xue-Tao Zhu, Jian-Dong Guo, Da-Peng Yu, Peng Gao. Probing Lattice Vibrations at SiO$_{2}$/Si Surface and Interface with Nanometer Resolution[J]. Chin. Phys. Lett., 2019, 36(2): 036801
[7] Hui-Ping Liu, Jin-Yu Li, Bing-Sheng Li. Microstructure of Hydrogen-Implanted Polycrystalline $\alpha$-SiC after Annealing[J]. Chin. Phys. Lett., 2018, 35(9): 036801
[8] Yu-Zhu Liu, Bing-Sheng Li, Hua Lin, Li Zhang. Recrystallization Phase in He-Implanted 6H-SiC[J]. Chin. Phys. Lett., 2017, 34(7): 036801
[9] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 036801
[10] TAN Yu, WANG Yan-Guo. Enhanced Current Carrying Capability of Au-ZnSe Nanowire-Au Nanostructure via High Energy Electron Irradiation[J]. Chin. Phys. Lett., 2014, 31(10): 036801
[11] GUO Xiao-Fei, XU Bin, WEN Zhen-Xing, FAN Xiao-Hong, TIAN Bin. The near-Surface Region of Cubic Boron Nitride Single Crystal from the Li3N-hBN System[J]. Chin. Phys. Lett., 2014, 31(04): 036801
[12] WANG Jun-Zhuan, YANG Xin-Xin, WEI Xiao-Xu, YU Lin-Wei, SHI Yi. Enhanced Crystallization and Sensitization of Si Nanocrystals in Al2O3:Er/Si:Er Multilayers[J]. Chin. Phys. Lett., 2013, 30(11): 036801
[13] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 036801
[14] LV Xiao-Long, ZHANG Xia, YAN Xin, LIU Xiao-Long, CUI Jian-Gong, LI Jun-Shuai, HUANG Yong-Qing, REN Xiao-Min. Growth of Self-Catalyzed InP Nanowires by Metalorganic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2012, 29(12): 036801
[15] ZENG Ya-Ping, WANG Yan-Guo, QU Bai-Hua, and YU Hong-Chun. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating[J]. Chin. Phys. Lett., 2012, 29(8): 036801
Viewed
Full text


Abstract