CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Effects of Localized Interface Phonons on Heat Conductivity in Ingredient Heterogeneous Solids |
Mei Wu1,2†, Ruochen Shi1,2†, Ruishi Qi1,2,3†, Yuehui Li1,2, Tao Feng4,5, Bingyao Liu2, Jingyuan Yan2, Xiaomei Li1,2, Zhetong Liu2, Tao Wang2, Tongbo Wei4,5, Zhiqiang Liu4,5, Jinlong Du2, Ji Chen6,7, and Peng Gao1,2,7,8,9* |
1International Center for Quantum Materials, Peking University, Beijing 100871, China 2Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China 3Department of Physics, University of California at Berkeley, Berkeley 94720, USA 4Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 6State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China 7Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 8Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China 9Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Mei Wu, Ruochen Shi, Ruishi Qi et al 2023 Chin. Phys. Lett. 40 036801 |
|
|
Abstract Phonons are the primary heat carriers in non-metallic solids. In compositionally heterogeneous materials, the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder and strain fluctuations, while the effects of compositional fluctuation induced local phonon states are usually ignored. Here, by scanning transmission electron microscopy electron energy loss spectroscopy and sophisticated calculations, we identify the vibrational properties of ingredient-dependent interface phonon modes in Al$_{x}$Ga$_{1-x}$N and quantify their various contributions to the local interface thermal conductance. We demonstrate that atomic-scale compositional fluctuation has significant influence on the vibrational thermodynamic properties, highly affecting the mode ratio and vibrational amplitude of interface phonon modes and subsequently redistributing their modal contribution to the interface thermal conductance. Our work provides fundamental insights into understanding of local phonon-boundary interactions in nanoscale inhomogeneities, which reveal new opportunities for optimization of thermal properties via engineering ingredient distribution.
|
|
Received: 08 January 2023
Published: 09 March 2023
|
|
PACS: |
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
68.35.Ja
|
(Surface and interface dynamics and vibrations)
|
|
|
|
|
[1] | Venkatasubramanian R, Siivola E, Colpitts T, and O'quinn B 2001 Nature 413 597 |
[2] | Rowe D M 2018 Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press) |
[3] | Waldrop M M 2016 Nature 530 144 |
[4] | Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M, and Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332 |
[5] | Ren J and Zhu J X 2013 Phys. Rev. B 87 241412 |
[6] | Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045 |
[7] | Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, and Ren Z 2008 Science 320 634 |
[8] | Qian X, Zhou J, and Chen G 2021 Nat. Mater. 20 1188 |
[9] | Tan G J, Zhao L D, and Kanatzidis M G 2016 Chem. Rev. 116 12123 |
[10] | Su L Z, Wang D Y, Wang S, Qin B, Wang Y, Qin Y, Jin Y, Chang C, and Zhao L D 2022 Science 375 1385 |
[11] | Vineis C J, Shakouri A, Majumdar A, and Kanatzidis M G 2010 Adv. Mater. 22 3970 |
[12] | Bu Z L, Zhang X Y, Shan B, Tang J, Liu H X, Chen Z W, Lin S, Li W, and Pei Y 2021 Sci. Adv. 7 eabf2738 |
[13] | Abeles B 1963 Phys. Rev. B 131 1906 |
[14] | Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, and Gogna P 2007 Adv. Mater. 19 1043 |
[15] | Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis M G, and He J Q 2014 Nat. Commun. 5 4515 |
[16] | Androulakis J, Lin C H, Kong H J, Uher C, Wu C I, Hogan T, Cook B A, Caillat T, Paraskevopoulos K M, and Kanatzidis M G 2007 J. Am. Chem. Soc. 129 9780 |
[17] | Lian H, Kumar A, Ocelík V, Baas J, Momand J, Kooi B J, and Blake G R 2021 J. Mater. Chem. A 9 12340 |
[18] | Lee S M, Cahill D G, and Venkatasubramanian R 1997 Appl. Phys. Lett. 70 2957 |
[19] | Garg J and Chen G 2013 Phys. Rev. B 87 140302 |
[20] | Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605 |
[21] | Zeiger P M and Rusz J 2021 Phys. Rev. B 104 104301 |
[22] | Gordiz K and Henry A 2016 J. Appl. Phys. 119 015101 |
[23] | Gordiz K and Henry A 2017 J. Appl. Phys. 121 025102 |
[24] | English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, and Zhigilei L V 2012 Phys. Rev. B 85 035438 |
[25] | Koh Y K, Cao Y, Cahill D G, and Jena D 2009 Adv. Funct. Mater. 19 610 |
[26] | Schelling P K, Phillpot S R, and Keblinski P 2002 Appl. Phys. Lett. 80 2484 |
[27] | Giri A and Hopkins P E 2020 Adv. Funct. Mater. 30 1903857 |
[28] | Krivanek O L, Lovejoy T C, Dellby N, Aoki T, Carpenter R W, Rez P, Soignard E, Zhu J, Batson P E, Lagos M J, Egerton R F, and Crozier P A 2014 Nature 514 209 |
[29] | Hage F S, Radtke G, Kepaptsoglou D M, Lazzeri M, and Ramasse Q M 2020 Science 367 1124 |
[30] | Senga R, Suenaga K, Barone P, Morishita S, Mauri F, and Pichler T 2019 Nature 573 247 |
[31] | Lagos M J, Trugler A, Hohenester U, and Batson P E 2017 Nature 543 529 |
[32] | Venkatraman K, Levin B D A, March K, Rez P, and Crozier P A 2019 Nat. Phys. 15 1237 |
[33] | Rez P, Aoki T, March K, Gur D, Krivanek O L, Dellby N, Lovejoy T C, Wolf S G, and Cohen H 2016 Nat. Commun. 7 10945 |
[34] | Qi R S, Shi R C, Li Y H, Sun Y W, Wu M, Li N, Du J L, Liu K H, Chen C, Chen J, Wang F, Yu D, Wang E G, and Gao P 2021 Nature 599 399 |
[35] | Yan X X, Liu C Y, Gadre C A, Gu L, Aoki T, Lovejoy T C, Dellby N, Krivanek O L, Schlom D G, Wu R Q, and Pan X Q 2021 Nature 589 65 |
[36] | Simon J, Protasenko V, Lian C, Xing H, and Jena D 2010 Science 327 60 |
[37] | Chaudhuri R, Bader S J, Chen Z, Muller D A, Xing H G, and Jena D 2019 Science 365 1454 |
[38] | Gadre C A, Yan X, Song Q, Li J, Gu L, Huyan H, Aoki T, Lee S W, Chen G, Wu R, and Pan X 2022 Nature 606 292 |
[39] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal C A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 |
[40] | Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029 |
[41] | Vanderbilt D 1990 Phys. Rev. B 41 7892 |
[42] | Bungaro C, Rapcewicz K, and Bernholc J 2000 Phys. Rev. B 61 6720 |
[43] | Gordiz K and Henry A 2016 Sci. Rep. 6 23139 |
[44] | Qi R S, Li N, Du J, Shi R, Huang Y, Yang X, Liu L, Xu Z, Dai Q, Yu D, and Gao P 2021 Nat. Commun. 12 1179 |
[45] | Salje E K, Alexe M, Kustov S, Weber M C, Schiemer J, Nataf G F, and Kreisel J 2016 Sci. Rep. 6 27193 |
[46] | Gordiz K and Henry A 2015 New J. Phys. 17 103002 |
[47] | Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262 |
[48] | Zhou X W, Jones R E, Kimmer C J, Duda J C, and Hopkins P E 2013 Phys. Rev. B 87 094303 |
[49] | Seyf H R, Gordiz K, Deangelis F, and Henry A 2019 J. Appl. Phys. 125 081101 |
[50] | Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, and Graham S 2021 Nat. Commun. 12 6901 |
[51] | Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, and Gao P 2022 Proc. Natl. Acad. Sci. USA 119 e2117027119 |
[52] | Tian X Z, Yan X G, Varnavides G, Yuan Y K, Kim D S, Ciccarino C J, Polina A M Y L, Li L J, Narang P, Pan X Q, and Miao J W 2021 Sci. Adv. 7 eabi6699 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|