ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields |
Yankun Dou1, Yiqi Fang1, Peipei Ge1, and Yunquan Liu1,2,3* |
1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China 2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Yankun Dou, Yiqi Fang, Peipei Ge et al 2023 Chin. Phys. Lett. 40 033201 |
|
|
Abstract Nondipole effects are ubiquitous and crucial in light-matter interaction. However, they are too weak to be directly observed. In strong-field physics, motion of electrons is mainly confined in transverse plane of light fields, which suppresses the significance of nondipole effects. Here, we present a theoretical study on enhancing and controlling the nondipole effect by using the synthesized two perpendicularly propagating laser fields. We calculate the three-dimensional photoelectron momentum distributions of strong-field tunneling ionization of hydrogen atoms using the classical trajectory Monte Carlo model and show that the nondipole effects are noticeably enhanced in such laser fields due to their remarkable influences on the sub-cycle photoelectron dynamics. In particular, we reveal that the magnitudes of the magnetic and electric components of nondipole effects can be separately controlled by modulating the ellipticity and amplitude of driving laser fields. This novel scenario holds promising applications for future studies with ultrafast structured light fields.
|
|
Received: 25 December 2022
Editors' Suggestion
Published: 28 February 2023
|
|
PACS: |
32.80.-t
|
(Photoionization and excitation)
|
|
31.15.xg
|
(Semiclassical methods)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
|
|
|
[1] | Keldysh L V 1965 Sov. Phys.-JETP 20 1307 |
[2] | Klaiber M, Hatsagortsyan K Z, and Keitel C H 2005 Phys. Rev. A 71 033408 |
[3] | Agostini P, Fabre F, Mainfray G et al. 1979 Phys. Rev. Lett. 42 1127 |
[4] | Paulus G G, Nicklich W, Xu H, Lambropoulos P, and Walther H 1994 Phys. Rev. Lett. 72 2851 |
[5] | Ferray M, L'Huillier A, Li X F et al. 1988 J. Phys. B 21 L31 |
[6] | Krause J L, Schafer K J, and Kulander K C 1992 Phys. Rev. Lett. 68 3535 |
[7] | L'Huillier A and Ph B 1993 Phys. Rev. Lett. 70 774 |
[8] | Fang Y Q, Lu S Y, and Liu Y Q 2021 Phys. Rev. Lett. 127 273901 |
[9] | Barton J J 1988 Phys. Rev. Lett. 61 1356 |
[10] | Huismans Y, Rouzée E A, Gijsbertsen A et al. 2011 Science 331 61 |
[11] | Huismans Y, Gijsbertsen A, Smolkowska A S et al. 2012 Phys. Rev. Lett. 109 013002 |
[12] | Young L, Ueda K, Guhr M et al. 2018 J. Phys. B 51 032003 |
[13] | Reiss H R 2014 J. Phys. B 47 204006 |
[14] | Wang M X, Chen S G, Liang H, and Peng L Y 2020 Chin. Phys. B 29 013302 |
[15] | Maurer J and Keller U 2021 J. Phys. B 54 094001 |
[16] | Smeenk C T L, Arissian L, and Zhou B 2011 Phys. Rev. Lett. 106 193002 |
[17] | Di Piazza A, Muller C, Hatsagortsyan K Z, and Keitel C H 2012 Rev. Mod. Phys. 84 1177 |
[18] | Lin K, Brennecke S, Ni H C et al. 2022 Phys. Rev. Lett. 128 023201 |
[19] | Willenberg B, Maurer J, Mayer B W, and Keller U 2019 Nat. Commun. 10 5548 |
[20] | Cooper J W and Manson S T 1969 Phys. Rev. 177 157 |
[21] | Krässig B, Bilheux J C, Dunford R W et al. 2003 Phys. Rev. A 67 022707 |
[22] | Seaton M J 1996 J. Phys. B 29 2373 |
[23] | Chelkowski S, Bandrauk A D, and Corkum P B 2014 Phys. Rev. Lett. 113 263005 |
[24] | Katsouleas T and Mori W B 1993 Phys. Rev. Lett. 70 1561 |
[25] | Titi A S and Drake G W F 2012 Phys. Rev. A 85 041404(R) |
[26] | Klaiber M, Yakaboylu E, Bauke H et al. 2013 Phys. Rev. Lett. 110 153004 |
[27] | Chelkowski S, Bandrauk A D, and Corkum P B 2015 Phys. Rev. A 92 051401(R) |
[28] | Hartung A, Eckart S, Brennecke S et al. 2019 Nat. Phys. 15 1222 |
[29] | Lin K, Chen X, Eckart S et al. 2022 Phys. Rev. Lett. 128 113201 |
[30] | Ludwig A, Maurer J, Mayer B W et al. 2014 Phys. Rev. Lett. 113 243001 |
[31] | He P L, Lao D, and He F 2017 Phys. Rev. Lett. 118 163203 |
[32] | Ni H C, Brennecke S, Gao X et al. 2020 Phys. Rev. Lett. 125 073202 |
[33] | Cooper J W 1993 Phys. Rev. A 47 1841 |
[34] | Seaton M J 1995 J. Phys. B 28 3185 |
[35] | Førre M and Simonsen A S 2014 Phys. Rev. A 90 053411 |
[36] | Grundmann S, Kircher M, Vela-Perez I et al. 2020 Phys. Rev. Lett. 124 233201 |
[37] | Hartung A, Brennecke S, Lin K et al. 2021 Phys. Rev. Lett. 126 053202 |
[38] | Fang Y Q, Guo Z N, Ge P P et al. 2022 Light: Sci. & Appl. 11 34 |
[39] | Liang H, Wang M X, Xiao X R et al. 2018 Phys. Rev. A 98 063413 |
[40] | Mao X D, Ni H C, Gong X C et al. 2022 Phys. Rev. A 106 063105 |
[41] | HuP B, Liu J, and Chen S G 1997 Phys. Lett. A 236 533 |
[42] | Li M, Liu Y, Liu H et al. 2013 Phys. Rev. Lett. 111 023006 |
[43] | Ammoso M V, Delone N B, and Kainov V B 1986 Sov. Phys.-JETP 64 2008 |
[44] | Landau L D and Lifschitz E M 1958 Quantum Mechanics (Non-Relativistic Theory) (New York: Oxford University Press) |
[45] | Brennecke S and Lein M 2019 Phys. Rev. A 100 023413 |
[46] | Madsen L B 2022 Phys. Rev. A 105 043107 |
[47] | Lambropoulos P, Doolen G, and Rountree S P 1975 Phys. Rev. Lett. 34 636 |
[48] | Guo Z N, Fang Y Q, Ge P P et al. 2021 Phys. Rev. A 104 L051101 |
[49] | Guo Z N, Ge P P, Fang Y Q et al. 2022 Ultrafast Sci. 2022 9802917 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|