Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 033201    DOI: 10.1088/0256-307X/40/3/033201
ATOMIC AND MOLECULAR PHYSICS |
Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields
Yankun Dou1, Yiqi Fang1, Peipei Ge1, and Yunquan Liu1,2,3*
1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
Yankun Dou, Yiqi Fang, Peipei Ge et al  2023 Chin. Phys. Lett. 40 033201
Download: PDF(6576KB)   PDF(mobile)(6577KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nondipole effects are ubiquitous and crucial in light-matter interaction. However, they are too weak to be directly observed. In strong-field physics, motion of electrons is mainly confined in transverse plane of light fields, which suppresses the significance of nondipole effects. Here, we present a theoretical study on enhancing and controlling the nondipole effect by using the synthesized two perpendicularly propagating laser fields. We calculate the three-dimensional photoelectron momentum distributions of strong-field tunneling ionization of hydrogen atoms using the classical trajectory Monte Carlo model and show that the nondipole effects are noticeably enhanced in such laser fields due to their remarkable influences on the sub-cycle photoelectron dynamics. In particular, we reveal that the magnitudes of the magnetic and electric components of nondipole effects can be separately controlled by modulating the ellipticity and amplitude of driving laser fields. This novel scenario holds promising applications for future studies with ultrafast structured light fields.
Received: 25 December 2022      Editors' Suggestion Published: 28 February 2023
PACS:  32.80.-t (Photoionization and excitation)  
  31.15.xg (Semiclassical methods)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  34.80.Dp (Atomic excitation and ionization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/033201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/033201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yankun Dou
Yiqi Fang
Peipei Ge
and Yunquan Liu
[1]Keldysh L V 1965 Sov. Phys.-JETP 20 1307
[2] Klaiber M, Hatsagortsyan K Z, and Keitel C H 2005 Phys. Rev. A 71 033408
[3] Agostini P, Fabre F, Mainfray G et al. 1979 Phys. Rev. Lett. 42 1127
[4] Paulus G G, Nicklich W, Xu H, Lambropoulos P, and Walther H 1994 Phys. Rev. Lett. 72 2851
[5] Ferray M, L'Huillier A, Li X F et al. 1988 J. Phys. B 21 L31
[6] Krause J L, Schafer K J, and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[7] L'Huillier A and Ph B 1993 Phys. Rev. Lett. 70 774
[8] Fang Y Q, Lu S Y, and Liu Y Q 2021 Phys. Rev. Lett. 127 273901
[9] Barton J J 1988 Phys. Rev. Lett. 61 1356
[10] Huismans Y, Rouzée E A, Gijsbertsen A et al. 2011 Science 331 61
[11] Huismans Y, Gijsbertsen A, Smolkowska A S et al. 2012 Phys. Rev. Lett. 109 013002
[12] Young L, Ueda K, Guhr M et al. 2018 J. Phys. B 51 032003
[13] Reiss H R 2014 J. Phys. B 47 204006
[14] Wang M X, Chen S G, Liang H, and Peng L Y 2020 Chin. Phys. B 29 013302
[15] Maurer J and Keller U 2021 J. Phys. B 54 094001
[16] Smeenk C T L, Arissian L, and Zhou B 2011 Phys. Rev. Lett. 106 193002
[17] Di Piazza A, Muller C, Hatsagortsyan K Z, and Keitel C H 2012 Rev. Mod. Phys. 84 1177
[18] Lin K, Brennecke S, Ni H C et al. 2022 Phys. Rev. Lett. 128 023201
[19] Willenberg B, Maurer J, Mayer B W, and Keller U 2019 Nat. Commun. 10 5548
[20] Cooper J W and Manson S T 1969 Phys. Rev. 177 157
[21] Krässig B, Bilheux J C, Dunford R W et al. 2003 Phys. Rev. A 67 022707
[22] Seaton M J 1996 J. Phys. B 29 2373
[23] Chelkowski S, Bandrauk A D, and Corkum P B 2014 Phys. Rev. Lett. 113 263005
[24] Katsouleas T and Mori W B 1993 Phys. Rev. Lett. 70 1561
[25] Titi A S and Drake G W F 2012 Phys. Rev. A 85 041404(R)
[26] Klaiber M, Yakaboylu E, Bauke H et al. 2013 Phys. Rev. Lett. 110 153004
[27] Chelkowski S, Bandrauk A D, and Corkum P B 2015 Phys. Rev. A 92 051401(R)
[28] Hartung A, Eckart S, Brennecke S et al. 2019 Nat. Phys. 15 1222
[29] Lin K, Chen X, Eckart S et al. 2022 Phys. Rev. Lett. 128 113201
[30] Ludwig A, Maurer J, Mayer B W et al. 2014 Phys. Rev. Lett. 113 243001
[31] He P L, Lao D, and He F 2017 Phys. Rev. Lett. 118 163203
[32] Ni H C, Brennecke S, Gao X et al. 2020 Phys. Rev. Lett. 125 073202
[33] Cooper J W 1993 Phys. Rev. A 47 1841
[34] Seaton M J 1995 J. Phys. B 28 3185
[35] Førre M and Simonsen A S 2014 Phys. Rev. A 90 053411
[36] Grundmann S, Kircher M, Vela-Perez I et al. 2020 Phys. Rev. Lett. 124 233201
[37] Hartung A, Brennecke S, Lin K et al. 2021 Phys. Rev. Lett. 126 053202
[38] Fang Y Q, Guo Z N, Ge P P et al. 2022 Light: Sci. & Appl. 11 34
[39] Liang H, Wang M X, Xiao X R et al. 2018 Phys. Rev. A 98 063413
[40] Mao X D, Ni H C, Gong X C et al. 2022 Phys. Rev. A 106 063105
[41] HuP B, Liu J, and Chen S G 1997 Phys. Lett. A 236 533
[42] Li M, Liu Y, Liu H et al. 2013 Phys. Rev. Lett. 111 023006
[43]Ammoso M V, Delone N B, and Kainov V B 1986 Sov. Phys.-JETP 64 2008
[44]Landau L D and Lifschitz E M 1958 Quantum Mechanics (Non-Relativistic Theory) (New York: Oxford University Press)
[45] Brennecke S and Lein M 2019 Phys. Rev. A 100 023413
[46] Madsen L B 2022 Phys. Rev. A 105 043107
[47] Lambropoulos P, Doolen G, and Rountree S P 1975 Phys. Rev. Lett. 34 636
[48] Guo Z N, Fang Y Q, Ge P P et al. 2021 Phys. Rev. A 104 L051101
[49] Guo Z N, Ge P P, Fang Y Q et al. 2022 Ultrafast Sci. 2022 9802917
Related articles from Frontiers Journals
[1] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 033201
[2] Shuai Wang, Zhiyuan Zhu, Yizhu Zhang, Tian-Min Yan, and Yuhai Jiang. Rabi Oscillations and Coherence Dynamics in Terahertz Streaking-Assisted Photoelectron Spectrum[J]. Chin. Phys. Lett., 2021, 38(1): 033201
[3] Fei Li, Yu-Jun Yang, Jing Chen, Xiao-Jun Liu, Zhi-Yi Wei, and Bing-Bing Wang. Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System[J]. Chin. Phys. Lett., 2020, 37(11): 033201
[4] Jiu Tang, Guizhong Zhang, Yufei He, Meng Li, Xin Ding, Jianquan Yao. Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses[J]. Chin. Phys. Lett., 2020, 37(2): 033201
[5] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 033201
[6] Meng Li, Gui-zhong Zhang, Xin Ding, Jian-quan Yao. Carrier Envelope Phase Description for an Isolated Attosecond Pulse by Momentum Vortices[J]. Chin. Phys. Lett., 2019, 36(6): 033201
[7] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 033201
[8] Juan-Juan Cao, Ting Gong, Zhong-Hao Li, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Transition Dipole Moment Measurements of Ultracold Photoassociated $^{85}$Rb$^{133}$Cs Molecules by Depletion Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(10): 033201
[9] Zhong-Hua Ji, Zhong-Hao Li, Ting Gong, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Rotational Population Measurement of Ultracold $^{85}$Rb$^{133}$Cs Molecules in the Lowest Vibrational Ground State[J]. Chin. Phys. Lett., 2017, 34(10): 033201
[10] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 033201
[11] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 033201
[12] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Dual-Wavelength Bad Cavity Laser as Potential Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(09): 033201
[13] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(08): 033201
[14] ZHU Chuan-Wen, TAO Zhi-Ming, CHEN Mo, LIU Zhong-Zheng, ZHANG Xiao-Gang, ZHANG Sheng-Nan, CHEN Jing-Biao. Population Distribution of Excited States in Cs Electrodeless Discharge Lamp[J]. Chin. Phys. Lett., 2015, 32(06): 033201
[15] LIAO Kai-Yu, YAN Hui, HE Jun-Yu, HUANG Wei, ZHANG Zhi-Ming, ZHU Shi-Liang. Experimental Generation of Narrow-Band Paired Photons: from Damped Rabi Oscillation to Group Delay[J]. Chin. Phys. Lett., 2014, 31(03): 033201
Viewed
Full text


Abstract