NUCLEAR PHYSICS |
|
|
|
|
Jet Radius and Momentum Splitting Fraction with Dynamical Grooming in Heavy-Ion Collisions |
Lei Wang1, Jin-Wen Kang1, Qing Zhang1, Shuwan Shen1, Wei Dai2*, Ben-Wei Zhang1,3*, and Enke Wang1,3 |
1Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China 2School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China 3Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
|
|
Cite this article: |
Lei Wang, Jin-Wen Kang, Qing Zhang et al 2023 Chin. Phys. Lett. 40 032101 |
|
|
Abstract We investigate the medium modifications of momentum splitting fraction and groomed jet radius with both dynamical grooming and soft drop algorithms in heavy-ion collisions. In the calculation, the partonic spectrum of initial hard scattering in p+p collisions is provided by the event generator PYTHIA8, and the energy loss of fast parton traversing in a hot/dense quantum-chromodynamic medium is simulated with the linear Boltzmann transport model. We predict the normalized distributions of the groomed jet radius $\theta_{\rm g}$ and momentum splitting fraction $z_{\rm g}$ with the dynamical grooming algorithm in Pb+Pb collisions at $\sqrt{s_{\scriptscriptstyle{\rm NN}}}$ = 5.02 TeV, then compare these quantities in dynamical grooming at $a=0.1$, with that in soft drop at $z_{\mathrm{cut}} = 0.1$ and $\beta = 0$. It is found that the normalized distribution ratios Pb+Pb/p+p with respect to $z_{\rm g}$ in $z_{\mathrm{cut}} = 0.1$, $\beta = 0$ soft drop case are close to unity, those in $a=0.1$ dynamical grooming case show enhancement at small $z_{\rm g}$, and Pb+Pb/p+p with respect to $\theta_{\rm g}$ in the dynamical grooming case demonstrate weaker modification than those in the soft drop counterparts. We further calculate the groomed jet number averaged momentum splitting fraction $\langle z_{\rm g} \rangle_{\rm jets}$ and averaged groomed jet radius $\langle \theta_{\rm g} \rangle_{\rm jets}$ in p+p and A+A for both grooming cases in three $p^{\rm ch~jet}_{\scriptscriptstyle{\rm T}}$ intervals, and find that the originally generated well balanced groomed jets will become more momentum imbalanced and jet size less narrowed due to jet quenching, and weaker medium modification of $z_{\rm g}$ and $\theta_{\rm g}$ in the $a =0.1$ dynamical grooming case than in the soft drop counterparts.
|
|
Received: 14 December 2022
Editors' Suggestion
Published: 07 March 2023
|
|
PACS: |
21.65.Qr
|
(Quark matter)
|
|
25.75.Bh
|
(Hard scattering in relativistic heavy ion collisions ?)
|
|
24.85.+p
|
(Quarks, gluons, and QCD in nuclear reactions)
|
|
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
|
|
|
[1] | Sterman G F and Weinberg S 1977 Phys. Rev. Lett. 39 1436 |
[2] | Altheimer A, Arora S, Asquith L et al. 2012 J. Phys. G 39 063001 |
[3] | Altheimer A, Arce A, Asquith L et al. 2014 Eur. Phys. J. C 74 2792 |
[4] | Marzani S, Soyez G, and Spannowsky M 2019 Looking inside jets: an introduction to jet substructure and boosted-object phenomenology (Springer) |
[5] | Acharya S, Adamová D, Adler A et al. (ALICE collaboration) 2022 J. High Energy Phys. 2022(05) 061 |
[6] | Casalderrey-Solana J, Milhano G, Pablos D, and Rajagopal K 2020 J. High Energy Phys. 2020(01) 044 |
[7] | Vitev I and Zhang B W 2010 Phys. Rev. Lett. 104 132001 |
[8] | Vitev I, Wicks S, and Zhang B W 2008 J. High Energy Phys. 2008(11) 093 |
[9] | Andrews H A, Apolinario L, Bertens R A et al. 2020 J. Phys. G 47 065102 |
[10] | Acharya S, Adamová D, Adhya S P et al. (ALICE collaboration) 2020 Phys. Lett. B 802 135227 |
[11] | Abdallah M S, Aboona B E, Adam J et al. (STAR collaboration) 2022 Phys. Rev. C 105 044906 |
[12] | Aaboud M, Abbott B, Abdinov O et al. (ATLAS collaboration) 2019 Phys. Rev. Lett. 123 042001 |
[13] | Wang X N and Zhu Y 2013 Phys. Rev. Lett. 111 062301 |
[14] | Majumder A 2013 Phys. Rev. C 88 014909 |
[15] | Zapp K, Ingelman G, Rathsman J, Stachel J, and Wiedemann U A 2009 Eur. Phys. J. C 60 617 |
[16] | Zhang B W, Wang E, and Wang X N 2004 Phys. Rev. Lett. 93 072301 |
[17] | Dai W, Wang S, Zhang S L, Zhang B W, and Wang E 2020 Chin. Phys. C 44 104105 |
[18] | Dai W, Li M Z, Zhang B W, and Wang E 2022 arXiv:2205.14668 [hep-ph] |
[19] | Wang S, Dai W, Zhang B W, and Wang E 2019 Eur. Phys. J. C 79 789 |
[20] | Schenke B, Gale C, and Jeon S 2009 Phys. Rev. C 80 054913 |
[21] | Armesto N, Cunqueiro L, and Salgado C A 2009 Eur. Phys. J. C 63 679 |
[22] | Dasgupta M, Fregoso A, Marzani S, and Powling A 2013 Eur. Phys. J. C 73 2623 |
[23] | Dasgupta M, Fregoso A, Marzani S, and Salam G P 2013 J. High Energy Phys. 2013(09) 029 |
[24] | Larkoski A J, Marzani S, Soyez G, and Thaler J 2014 J. High Energy Phys. 2014(05) 146 |
[25] | Acharya S, Adamová D, Adler A et al. (A Large Ion Collider Experiment, ALICE collaboration) 2022 Phys. Rev. Lett. 128 102001 |
[26] | Tripathee A, Xue W, Larkoski A, Marzani S, and Thaler J 2017 Phys. Rev. D 96 074003 |
[27] | CMS collaboration 2016 Splitting Function Pp PbPb Collisions at 5.02 TeV. Report No. CMS-PAS-HIN-16-006 |
[28] | Kauder K (STAR collaboration) 2017 Nucl. Part. Phys. Proc. 289 137 |
[29] | Chang N B, Cao S, and Qin G Y 2018 Phys. Lett. B 781 423 |
[30] | Chien Y T and Vitev I 2017 Phys. Rev. Lett. 119 112301 |
[31] | Kang Z B, Lee K, Liu X, Neill D, and Ringer F 2020 J. High Energy Phys. 2020(02) 054 |
[32] | Ringer F, Xiao B W, and Yuan F 2020 Phys. Lett. B 808 135634 |
[33] | Mehtar-Tani Y, Soto-Ontoso A, and Tywoniuk K 2020 Phys. Rev. D 101 034004 |
[34] | Caucal P, Soto-Ontoso A, and Takacs A 2022 Phys. Rev. D 105 114046 |
[35] | Caucal P, Soto-Ontoso A, and Takacs A 2021 J. High Energy Phys. 2021(07) 020 |
[36] | ALICE collaboration 2022 arXiv:2204.10246 [nucl-ex] |
[37] | Dreyer F A, Salam G P, and Soyez G 2018 J. High Energy Phys. 2018(12) 064 |
[38] | Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen C O, and Skands P Z 2015 Comput. Phys. Commun. 191 159 |
[39] | Cacciari M, Salam G P, and Soyez G 2008 J. High Energy Phys. 2008(04) 063 |
[40] | He Y Y, Luo T, Wang X N, and Zhu Y 2015 Phys. Rev. C 91 054908 |
[41] | Cao S S, Luo T, Qin G Y, and Wang X N 2016 Phys. Rev. C 94 014909 |
[42] | Cao S S, Luo T, Qin G Y, and Wang X N 2018 Phys. Lett. B 777 255 |
[43] | Guo X F and Wang X N 2000 Phys. Rev. Lett. 85 3591 |
[44] | Zhang B W and Wang X N 2003 Nucl. Phys. A 720 429 |
[45] | Zhang B W, Wang E K, and Wang X N 2005 Nucl. Phys. A 757 493 |
[46] | Pang L G, Wang Q, and Wang X N 2012 Phys. Rev. C 86 024911 |
[47] | Pang L G, Hatta Y, Wang X N, and Xiao B W 2015 Phys. Rev. D 91 074027 |
[48] | Lin Z W, Ko C M, Li B A, Zhang B, and Pal S 2005 Phys. Rev. C 72 064901 |
[49] | Lin Z W and Zheng L 2021 Nucl. Sci. Tech. 32 113 |
[50] | Luo T, Cao S, He Y, and Wang X N 2018 Phys. Lett. B 782 707 |
[51] | Zhang S L, Wang X N, and Zhang B W 2022 Phys. Rev. C 105 054902 |
[52] | Putschke J H, Kauder K, Khalaj E et al. 2019 arXiv:1903.07706 [nucl-th] |
[53] | Sjöstrand T 1986 Comput. Phys. Commun. 39 347 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|