Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 020201    DOI: 10.1088/0256-307X/40/2/020201
GENERAL |
Higher Dimensional Camassa–Holm Equations
S. Y. Lou1, Man Jia1*, and Xia-Zhi Hao2*
1School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
2Faculty of Science, Zhejiang University of Technology, Hangzhou 310014, China
Cite this article:   
S. Y. Lou, Man Jia, and Xia-Zhi Hao 2023 Chin. Phys. Lett. 40 020201
Download: PDF(529KB)   PDF(mobile)(540KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Utilizing some conservation laws of the (1+1)-dimensional Camassa–Holm (CH) equation and/or its reciprocal forms, some (n+1)-dimensional CH equations for $n\geq 1$ are constructed by a modified deformation algorithm. The Lax integrability can be proven by applying the same deformation algorithm to the Lax pair of the (1+1)-dimensional CH equation. A novel type of peakon solution is implicitly given and expressed by the LambertW function.
Received: 01 January 2023      Editors' Suggestion Published: 06 February 2023
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Sb\\  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/020201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Y. Lou
Man Jia
and Xia-Zhi Hao
[1] Lou S Y and Ni G J 1989 Phys. Lett. A 140 33
[2] Hu H C, Lou S Y, and Chow K W 2007 Chaos Solitons & Fractals 31 1213
[3] Lou S Y 1997 J. Phys. A 30 7259
[4] Lou S Y, Hao X Z, and Jia M 2022 arXiv:2211.06844 [nlin.SI]
[5] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[6] Lou S Y 2018 J. Math. Phys. 59 083507
[7] Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[8] Fuchssteiner B and Fokas A 1981 Physica D 4 47
[9] Constantin A and Strauss W 2000 Phys. Lett. A 270 140
[10] Dai H H 1998 Acta Mech. 127 193
[11] Hunter J K and Saxton R 1991 SIAM J. Appl. Math. 51 1498
[12] Bressan A and Constantin A 2005 SIAM J. Math. Anal. 37 996
[13] Loewner C 1952 J. Anal. Math. 2 219
[14] Konopelchenko B and Rogers C 1991 Phys. Lett. A 158 391
[15] Lou S Y, Rogers C, and Schief W K 2003 J. Math. Phys. 44 5869
[16] Oevel W and Schief W K 1994 Rev. Math. Phys. 6 1301
[17] Lou S Y 2003 J. Phys. A 36 3877
[18] Konopelchenko B G and Rogers C 1993 J. Math. Phys. 34 214
[19] Schief W K 1994 Proc. R. Soc. A|Proc. R. Soc. London Ser. A 446 381
[20] Lou S Y and Qiao Z J 2017 Chin. Phys. Lett. 34 100201
[21] Zhang D J and Chen D Y 2002 Chaos Solitons & Fractals 14 573
[22] Wang D S, Li Q, Wen X Y, and Liu L 2020 Rep. Math. Phys. 86 325
[23] Lü X and Ma W X 2016 Nonlinear Dyn. 85 1217
[24] Wang D S, Guo B L, and Wang X L 2019 J. Differ. Equ. 266 5209
Related articles from Frontiers Journals
[1] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 020201
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 020201
[3] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020201
[4] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 020201
[5] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 020201
[6] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 020201
[7] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 020201
[8] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 020201
[9] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 020201
[10] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 020201
[11] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 020201
[12] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 020201
[13] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 020201
[14] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 020201
[15] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 020201
Viewed
Full text


Abstract