Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 127201    DOI: 10.1088/0256-307X/40/12/127201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Unconventional Nonreciprocal Voltage Transition in Ag$_{2}$Te Nanobelts
Peng-Liang Leng1†, Xiang-Yu Cao1†, Qiang Ma1, Lin-Feng Ai1, Yu-Da Zhang1, Jing-Lei Zhang2, and Fa-Xian Xiu1*
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
Cite this article:   
Peng-Liang Leng, Xiang-Yu Cao, Qiang Ma et al  2023 Chin. Phys. Lett. 40 127201
Download: PDF(4097KB)   PDF(mobile)(4865KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonreciprocal effects are consistently observed in noncentrosymmetric materials due to the intrinsic symmetry breaking and in high-conductivity systems due to the extrinsic thermoelectric effect. Meanwhile, nonreciprocal charge transport is widely utilized as an effective experimental technique for detecting intrinsic unidirectional electrical contributions. Here, we show an unconventional nonreciprocal voltage transition in topological insulator Ag$_{2}$Te nanobelts. The nonreciprocal voltage develops from nearly zero to giant values under the applied current $I_{\rm ac}$ and external magnetic fields, while remaining unchanged under various current $I_{\rm dc}$. This unidirectional electrical contribution is further evidenced by the differential resistance ($dV/dI$) measurements. Furthermore, the transition possesses two-dimensional properties under a tilted magnetic field and occurs when the voltage between two electrodes exceeds a certain value. We propose a possible mechanism based on the development of edge channels in Ag$_{2}$Te nanobelts to interpret the phenomenon. Our results not only introduce a peculiar nonreciprocal voltage transition in topological materials but also enrich the understanding of the intrinsic mechanism that strongly affects nonreciprocal charge transport.
Received: 11 August 2023      Editors' Suggestion Published: 30 November 2023
PACS:  72.20.Ht (High-field and nonlinear effects)  
  73.43.Fj (Novel experimental methods; measurements)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/127201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/127201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng-Liang Leng
Xiang-Yu Cao
Qiang Ma
Lin-Feng Ai
Yu-Da Zhang
Jing-Lei Zhang
and Fa-Xian Xiu
[1] Tokura Y and Nagaosa N 2018 Nat. Commun. 9 3740
[2] Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S, Kaneko Y, Nagaosa N, and Iwasa Y 2017 Nat. Phys. 13 578
[3] He P, Zhang S S L, Zhu D, Liu Y, Wang Y, Vignale G, and Yang H 2018 Nat. Phys. 14 495
[4] Wakatsuki R, Saito Y, Hoshino S, Itahashi Y M, Ideue T, Iwasa Y, and Nagaosa N 2017 Sci. Adv. 3 e1602390
[5] Itahashi Y M, Ideue T, Saito Y, Shimizu S, Nojima T, and Iwasa Y 2020 Sci. Adv. 6 eaay9120
[6] Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Hashizume D, and Iwasa Y 2017 Nat. Commun. 8 14465
[7] Zhang E, Xu X, Zou Y C, Ai L, Dong X, Huang C, Leng P, Liu S, Zhang Y, Jia Z, Peng X, Zhao M, Yang Y, Li Z, Guo H, Haigh S J, Shen J, and Xiu F 2020 Nat. Commun. 11 5634
[8] de Martino A, Egger R, and Tsvelik A M 2006 Phys. Rev. Lett. 97 076402
[9] Yasuda K, Tsukazaki A, Yoshimi R, Kawasaki M, and Tokura Y 2016 Phys. Rev. Lett. 117 127202
[10] Legg H F, Rößler M, Münning F, Fan D, Breunig O, Bliesener A, Lippertz G, Uday A, Taskin A A, Klinovaja J, and Ando Y 2022 Nat. Nanotechnol. 17 696
[11] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Gedik N, and Jarillo-Herrero P 2018 Nature 565 337
[12] Kang K, Li T, Shan J, and Mak K F 2019 Nat. Mater. 18 324
[13] Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J, Liang G, and Yang H 2021 Nat. Nanotechnol. 16 421
[14] Lai S, Liu H, Zhang Z, Zhao J, Feng X, Wang N, Tang C, Liu Y, Yang S A, and Gao W B 2021 Nat. Nanotechnol. 16 869
[15] Du Z Z, Wang C M, Lu H Z, and Xie X C 2018 Phys. Rev. Lett. 121 266601
[16] Zhao W, Fei Z, Song T, Choi H K, Palomaki T, Sun B, Malinowski P, McGuire M A, Xu X, and Cobden D H 2020 Nat. Mater. 19 503
[17] Yasuda K, Morimoto T, Yoshimi R, Mogi M, Tsukazaki A, Kawamura M, Takahashi K S, Nagaosa N, and Tokura Y 2020 Nat. Nanotechnol. 15 831
[18] He P, Hsu C H, Shi S, Cai K, Wang J, Wang Q, Eda G, Pereira V M, and Yang H 2019 Nat. Commun. 10 1290
[19] Zhang C, Yuan X, Zhang J, Leng P, Mou Y, Ni Z, Zhang H, Yang Y, and Xiu F 2021 Phys. Rev. Appl. 15 034084
[20] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Hwang H Y, and Tokura Y 2013 Science 342 1490
[21] Chen G, Zholud A, and Urazhdin S 2020 Phys. Rev. X 10 011064
[22] Wakatsuki R and Nagaosa N 2018 Phys. Rev. Lett. 121 026601
[23] Avci C O, Garello K, Ghosh A, Alvarado S F, and Gambardella P 2015 Nat. Phys. 11 570
[24] Zhang W, Yu R, Feng W, Yao Y, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808
[25] Lee S, In J, Yoo Y, Jo Y, Park Y C, Kim H, Koo H C, Kim B, and Wang K L 2012 Nano Lett. 12 4194
[26] Leng P, Chen F, Cao X, Wang Y, Huang C, Sun X, Yang Y, Zhou J, Xie X, Li Z, Zhang E, Yang Y, and Xiu F 2020 Nano Lett. 20 7004
[27] Sulaev A, Teo K L, and Wang L 2015 Sci. Rep. 5 8062
[28] Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel E C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Xiu F X, and Hillenbrand R 2023 Nat. Mater. 22 860
[29] Huang C, Zhou B T, Zhang H, Yang B, Liu R, Wang H, Wan Y, Huang K, Liao Z, Zhang E, Liu S, Deng Q, Chen Y, Han X, Zou J, Lin X, Han Z, Law K T, and Xiu F 2019 Nat. Commun. 10 2217
[30] Huang C, Narayan A, Zhang E, Xie X, Ai L, Liu S, Yi C, Sanvito S, and Xiu F 2020 Natl. Sci. Rev. 7 1468
[31] Vodolazov D Y and Peeters F M 2005 Phys. Rev. B 72 172508
Related articles from Frontiers Journals
[1] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 127201
[2] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 127201
[3] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 127201
[4] ZENG Lang, XIN Zheng, CHEN Shao-Wen, DU Gang, KANG Jin-Feng, LIU Xiao-Yan. Phonon-Limited Electron Mobility in Single-Layer MoS2[J]. Chin. Phys. Lett., 2014, 31(2): 127201
[5] KHALIL Hafiz M. W., KELEKCI Ozgur, NOH Hwayong. Carrier Density and Electric Field Dependent Nonlinear Transport of Chemical Vapor Deposition Graphene[J]. Chin. Phys. Lett., 2013, 30(3): 127201
[6] WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji. A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage[J]. Chin. Phys. Lett., 2012, 29(10): 127201
[7] YAN Da-Wei, ZHU Zhao-Min, CHENG Jian-Min, GU Xiao-Feng, and LU Hai. Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN[J]. Chin. Phys. Lett., 2012, 29(8): 127201
[8] LI Sheng-Tao, YANG Yan, ZHANG Le, CHENG Peng-Fei, LI Jian-Ying. Effect of Tunneling Current on Schottky Barrier Height in ZnO Varistors at Low Temperature[J]. Chin. Phys. Lett., 2009, 26(7): 127201
[9] LI Zhi, WEI En-Bo, ZHANG Han-De, TIAN Ji-Wei. Dielectric Response of Graded Spherical Composites[J]. Chin. Phys. Lett., 2005, 22(9): 127201
[10] ZHANG Pei-Hong, FAN Yong, WANG Fo-Chi, XIE Hua, LI Gang, LEI Qing-Quan. Conduction Current Characteristics and Carrier Mobility of Both Original and Corona-Resistant Polyimide Films[J]. Chin. Phys. Lett., 2005, 22(5): 127201
[11] LIAO Zhi-Min, ZHANG Hong-Zhou, XU Jun, YU Da-Peng. Bulk-Quantity Synthesis and Conductive Properties of Comb-Like Dendritic ZnO Nanostructures[J]. Chin. Phys. Lett., 2005, 22(4): 127201
[12] ZANG Guo-Zhong, WANG Jin-Feng, CHEN Hong-Cun, SU Wen-Bin, WANG Chun-Ming, QI Peng. Nonlinear Electrical Behaviour of Composite SnO2--Zn2SnO4 System[J]. Chin. Phys. Lett., 2005, 22(3): 127201
[13] WANG Chun-Ming, WANG Jin-Feng, CHEN Hong-Cun, SU Wen-Bin, ZANG Guo-Zhong, QI Peng. Effects of Er2O3 on Electrical Properties of the SnO2.CoO.Ta2O5 Varistor System[J]. Chin. Phys. Lett., 2004, 21(4): 127201
[14] WEI En-Bo, GU Guo-Qing. An Effective Medium Approximation of Nonlinear Composites with Spherical Particle[J]. Chin. Phys. Lett., 2001, 18(7): 127201
[15] LIU Hong-wu, GAO Chun-xiao, WANG Hui, CUI Qi-liang, ZOU Guang-tian, HUANG Xi-min. Effects of Chamber Pressure on Current-Voltage Characteristic of Metal-Insulator-Metal Element in Heat-Treating Anodized Ta2O5 Film [J]. Chin. Phys. Lett., 1999, 16(11): 127201
Viewed
Full text


Abstract