GENERAL |
|
|
|
|
Bounding Free Energy Difference with Flow Matching |
Lu Zhao1,2 and Lei Wang1,3* |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Lu Zhao and Lei Wang 2023 Chin. Phys. Lett. 40 120201 |
|
|
Abstract We introduce a method for computing the Helmholtz free energy using the flow matching technique. Unlike previous work that utilized flow-based models for variational free energy calculations, this method provides bounds for free energy estimation based on targeted free energy perturbation by performing calculations on samples from both ends of the mapping. We demonstrate applications of the present method by estimating the free energy of a classical Coulomb gas in a harmonic trap.
|
|
Received: 28 September 2023
Editors' Suggestion
Published: 21 December 2023
|
|
PACS: |
02.70.-c
|
(Computational techniques; simulations)
|
|
02.70.Tt
|
(Justifications or modifications of Monte Carlo methods)
|
|
02.70.Uu
|
(Applications of Monte Carlo methods)
|
|
02.50.Ng
|
(Distribution theory and Monte Carlo studies)
|
|
|
|
|
[1] | Kollman P 1993 Chem. Rev. 93 2395 |
[2] | Frenkel D and Smit B 2023 Understanding Molecular Simulation: From Algorithms to Applications (Amsterdam: Elsevier) |
[3] | Tuckerman M E 2023 Statistical Mechanics: Theory and Molecular Simulation (Oxford: Oxford University Press) |
[4] | Jarzynski C 1997 Phys. Rev. Lett. 78 2690 |
[5] | Neal R M 2001 Stat. Comput. 11 125 |
[6] | Zwanzig R W 1954 J. Chem. Phys. 22 1420 |
[7] | Jarzynski C 2002 Phys. Rev. E 65 046122 |
[8] | Hahn A M and Then H 2009 Phys. Rev. E 79 011113 |
[9] | Tabak E G and Vanden-Eijnden E 2010 Commun. Math. Sci. 8 217 |
[10] | Dinh L, Krueger D, and Bengio Y 2014 arXiv:1410.8516 [cs.LG] |
[11] | Rezende D and Mohamed S 2015 Proceedings of Machine Learning Research (PMLR) vol 37 p 1530 |
[12] | Papamakarios G, Nalisnick E, Rezende D J, Mohamed S, and Lakshminarayanan B 2021 J. Mach. Learn. Res. 22 2617 |
[13] | Wirnsberger P, Ballard A J, Papamakarios G, Abercrombie S, Racanière S, Pritzel A, Rezende D J, and Blundell C 2020 J. Chem. Phys. 153 144112 |
[14] | Wirnsberger P, Papamakarios G, Ibarz B, Racanière S, Ballard A J, Pritzel A, and Blundell C 2022 Mach. Learn.: Sci. Technol. 3 025009 |
[15] | Caselle M, Cellini E, Nada A, and Panero M 2022 J. High Energy Phys. 2022(07) 15 |
[16] | Zhang L and Wang L et al. 2018 arXiv:1809.10188 [cs.LG] |
[17] | Chen R T Q, Rubanova Y, Bettencourt J, and Duvenaud D K 2018 Advances in Neural Information Processing Systems (NeurIPS 2018) vol 31 |
[18] | Lipman Y, Chen R T, Ben-Hamu H, Nickel M, and Le M 2022 arXiv:2210.02747 [cs.LG] |
[19] | Liu X C, Gong C Y, and Liu Q 2022 arXiv:2209.03003 [cs.LG] |
[20] | Albergo M S and Vanden-Eijnden E 2022 arXiv:2209.15571 [cs.LG] |
[21] | Klein L, Krämer A, and Noé F 2023 arXiv:2306.15030 [cs.LG] |
[22] | Li S H and Wang L 2018 Phys. Rev. Lett. 121 260601 |
[23] | Nicoli K A, Nakajima S, Strodthoff N, Samek W, Müller K R, and Kessel P 2020 Phys. Rev. E 101 023304 |
[24] | Li S H, Dong C X, Zhang L, and Wang L 2020 Phys. Rev. X 10 021020 |
[25] | Xie H, Zhang L, and Wang L 2022 arXiv:2105.08644 [cond-mat.str-el] |
[26] | Xie H, Zhang L, and Wang L 2023 SciPost Phys. 14 154 |
[27] | Xie H, Li Z H, Wang H, Zhang L, and Wang L 2023 Phys. Rev. Lett. 131 126501 |
[28] | Bolton F and Rössler U 1993 Superlattices Microstruct. 13 139 |
[29] | Crooks G E 2000 Phys. Rev. E 61 2361 |
[30] | Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, and Polosukhin I 2017 Advances in Neural Information Processing Systems (NIPS 2017) vol 30 |
[31] | Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 |
[32] | Tang Y, Yuan R, Chen J, and Ao P 2015 Phys. Rev. E 91 042108 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|