Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 120201    DOI: 10.1088/0256-307X/40/12/120201
GENERAL |
Bounding Free Energy Difference with Flow Matching
Lu Zhao1,2 and Lei Wang1,3*
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Lu Zhao and Lei Wang 2023 Chin. Phys. Lett. 40 120201
Download: PDF(2117KB)   PDF(mobile)(2279KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a method for computing the Helmholtz free energy using the flow matching technique. Unlike previous work that utilized flow-based models for variational free energy calculations, this method provides bounds for free energy estimation based on targeted free energy perturbation by performing calculations on samples from both ends of the mapping. We demonstrate applications of the present method by estimating the free energy of a classical Coulomb gas in a harmonic trap.
Received: 28 September 2023      Editors' Suggestion Published: 21 December 2023
PACS:  02.70.-c (Computational techniques; simulations)  
  02.70.Tt (Justifications or modifications of Monte Carlo methods)  
  02.70.Uu (Applications of Monte Carlo methods)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/120201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu Zhao and Lei Wang
[1] Kollman P 1993 Chem. Rev. 93 2395
[2]Frenkel D and Smit B 2023 Understanding Molecular Simulation: From Algorithms to Applications (Amsterdam: Elsevier)
[3]Tuckerman M E 2023 Statistical Mechanics: Theory and Molecular Simulation (Oxford: Oxford University Press)
[4] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[5] Neal R M 2001 Stat. Comput. 11 125
[6] Zwanzig R W 1954 J. Chem. Phys. 22 1420
[7] Jarzynski C 2002 Phys. Rev. E 65 046122
[8] Hahn A M and Then H 2009 Phys. Rev. E 79 011113
[9] Tabak E G and Vanden-Eijnden E 2010 Commun. Math. Sci. 8 217
[10] Dinh L, Krueger D, and Bengio Y 2014 arXiv:1410.8516 [cs.LG]
[11]Rezende D and Mohamed S 2015 Proceedings of Machine Learning Research (PMLR) vol 37 p 1530
[12]Papamakarios G, Nalisnick E, Rezende D J, Mohamed S, and Lakshminarayanan B 2021 J. Mach. Learn. Res. 22 2617
[13] Wirnsberger P, Ballard A J, Papamakarios G, Abercrombie S, Racanière S, Pritzel A, Rezende D J, and Blundell C 2020 J. Chem. Phys. 153 144112
[14] Wirnsberger P, Papamakarios G, Ibarz B, Racanière S, Ballard A J, Pritzel A, and Blundell C 2022 Mach. Learn.: Sci. Technol. 3 025009
[15] Caselle M, Cellini E, Nada A, and Panero M 2022 J. High Energy Phys. 2022(07) 15
[16] Zhang L and Wang L et al. 2018 arXiv:1809.10188 [cs.LG]
[17]Chen R T Q, Rubanova Y, Bettencourt J, and Duvenaud D K 2018 Advances in Neural Information Processing Systems (NeurIPS 2018) vol 31
[18] Lipman Y, Chen R T, Ben-Hamu H, Nickel M, and Le M 2022 arXiv:2210.02747 [cs.LG]
[19] Liu X C, Gong C Y, and Liu Q 2022 arXiv:2209.03003 [cs.LG]
[20] Albergo M S and Vanden-Eijnden E 2022 arXiv:2209.15571 [cs.LG]
[21] Klein L, Krämer A, and Noé F 2023 arXiv:2306.15030 [cs.LG]
[22] Li S H and Wang L 2018 Phys. Rev. Lett. 121 260601
[23] Nicoli K A, Nakajima S, Strodthoff N, Samek W, Müller K R, and Kessel P 2020 Phys. Rev. E 101 023304
[24] Li S H, Dong C X, Zhang L, and Wang L 2020 Phys. Rev. X 10 021020
[25] Xie H, Zhang L, and Wang L 2022 arXiv:2105.08644 [cond-mat.str-el]
[26] Xie H, Zhang L, and Wang L 2023 SciPost Phys. 14 154
[27] Xie H, Li Z H, Wang H, Zhang L, and Wang L 2023 Phys. Rev. Lett. 131 126501
[28] Bolton F and Rössler U 1993 Superlattices Microstruct. 13 139
[29] Crooks G E 2000 Phys. Rev. E 61 2361
[30]Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, and Polosukhin I 2017 Advances in Neural Information Processing Systems (NIPS 2017) vol 30
[31] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[32] Tang Y, Yuan R, Chen J, and Ao P 2015 Phys. Rev. E 91 042108
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 120201
[2] Ze-Wang Zhang, Shuo Yang, Yi-Hang Wu, Chen-Xi Liu, Yi-Min Han, Ching-Hua Lee, Zheng Sun, Guang-Jie Li, Xiao Zhang. Predicting Quantum Many-Body Dynamics with Transferable Neural Networks[J]. Chin. Phys. Lett., 2020, 37(1): 120201
[3] S. Nazifkar, K. Javidan, M. Sarbishaei. Interaction of Double Sine-Gordon Solitons with External Potentials: an Analytical Model[J]. Chin. Phys. Lett., 2016, 33(12): 120201
[4] Jian Xu, Cheng-Bin Wang, Wei Zhang, Cui-Lan Ren, Heng-Feng Gong, Ping Huai. Atomistic Simulations of the Effect of Helium on the Dissociation of Screw Dislocations in Nickel[J]. Chin. Phys. Lett., 2016, 33(02): 120201
[5] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 120201
[6] QIU Yu-Fen, WU Xin. Application of the St?rmer–Verlet-Like Symplectic Method to the Wave Equation*[J]. Chin. Phys. Lett., 2013, 30(8): 120201
[7] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 120201
[8] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 120201
[9] LI Rong, WU Xin** . Two New Fourth-Order Three-Stage Symplectic Integrators[J]. Chin. Phys. Lett., 2011, 28(7): 120201
[10] Mohammad Noh Daud, Gabriel G. Balint-Kurti. A Time-Dependent Wavepacket Method for Photodissociation Dynamics of Triatomic Molecule[J]. Chin. Phys. Lett., 2009, 26(7): 120201
[11] ZHU Meng-Hua, LIU Liang-Gang, XU Ao-Ao, Ma Tao. Automatic Estimation of Peak Regions in Gamma-Ray Spectra Measured by NaI Detector[J]. Chin. Phys. Lett., 2008, 25(11): 120201
[12] FU Jing-Li, FU Hao. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems[J]. Chin. Phys. Lett., 2008, 25(9): 120201
[13] WANG Jun-Mao, ZHANG Miao, ZHANG Wen-Liang, ZHANG Rui, HAN Jia-Hua. A New Method for Constructing Travelling Wave Solutions to the modified Benjamin--Bona--Mahoney Equation[J]. Chin. Phys. Lett., 2008, 25(7): 120201
[14] LU Wei-Tao, ZHANG Hua, WANG Shun-Jin. Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem[J]. Chin. Phys. Lett., 2008, 25(7): 120201
[15] BIAN Xue-Bin, LIU Hong-Ping, SHI Ting-Yun. A Time-Dependent Approach to High-Resolution Photoabsorption Spectrum of Rydberg Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2008, 25(6): 120201
Viewed
Full text


Abstract