Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 114204    DOI: 10.1088/0256-307X/40/11/114204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Preparation of Bi$_{2}$Te$_{3}$ Based on Saturable Absorption System and Its Application in Fiber Lasers
Haoyu Wang, Yue-Jia Xiao, Qi Liu, Xiao-Wei Xing, Hu-Jiang Yang, and Wen-Jun Liu*
State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Haoyu Wang, Yue-Jia Xiao, Qi Liu et al  2023 Chin. Phys. Lett. 40 114204
Download: PDF(3281KB)   PDF(mobile)(3308KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fiber laser is a fundamental component of laser systems and is of great significance for development of laser technology. Its pulse output can be divided into $Q$-switched and mode-locked. Achieving ultrashort pulse with narrower pulse duration and higher power is the focus of current research on mode-locked lasers. As an important component of fiber laser systems, saturable absorber (SA) can modulate losses in the optical cavity and generate pulses, enabling the laser system to achieve pulse output under long-term normal operating conditions better. Therefore, expanding the selection range of materials with better saturable absorption properties to improve the quality of pulse output is an important topic in current research. Here, the second generation topological insulator Bi$_{2}$Te$_{3}$ single crystal is prepared, and a ring fiber laser system is built with the Bi$_{2}$Te$_{3}$ SA. The mode-locked pulse with a pulse duration of 288 fs and a signal-to-noise ratio of 80.202 dB is realized. This result verifies that Bi$_{2}$Te$_{3}$, as a member of topological insulator, has good saturable absorption characteristics, and has broad prospects for the application research in lasers.
Received: 18 October 2023      Published: 15 November 2023
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.70.Hj (Laser materials)  
  42.70.-a (Optical materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/114204       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/114204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haoyu Wang
Yue-Jia Xiao
Qi Liu
Xiao-Wei Xing
Hu-Jiang Yang
and Wen-Jun Liu
[1] Gattass R R and Mazur E 2008 Nat. Photonics 2 219
[2] Lee J, Kim Y J, Lee S, and Kim S W 2010 Nat. Photonics 4 716
[3] Fu W, Wright L G, Backus S, and Frank W 2018 Opt. Express 26 9432
[4] Woodward R I 2018 J. Opt. 20 033002
[5] Song Y Q, Jia X Z, Lin Q M, Yan L, Lu B L, and Bai J T 2021 Appl. Phys. Express 14 102002
[6] Lin Q M, Hou L, He X, Sun J, Lu B L, Chen H W, and Bai J T 2017 Laser Phys. Lett. 14 075102
[7] Lin Q M, Yan L, Jia X Z, and Bai J T 2021 Chin. Opt. Lett. 19 111405
[8] Guo B, Wang S H, Wu Z X, Wang Z X, Wang D H, Huang H, Ge Y Q, and Zhang H 2018 Opt. Express 26 22750
[9] Cui W W, Xing X W, Chen Y Q, Ye H, and Liu W J 2023 Chin. Phys. Lett. 40 024201
[10] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Basko D M, and Ferrari A C 2010 ACS Nano 4 803
[11] Martinez A and Sun Z P 2013 Nat. Photonics 7 842
[12] Wang X Z, Wang Z H, Wang Y Y, Song J J, and Wei Z Y 2021 Chin. Phys. Lett. 38 074202
[13] Chen S Q, Zhao C J, Li Y, Huang H H, Zhang H, and Wen S C 2014 Opt. Mater. Express 4 587
[14] Li Y S, Li J H, Li Y H, Li Y L, Niu S, and Li N 2018 Ultrason. Sonochem. 40 798
[15] Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Wang H Q, and Ibrahim K 2016 J. Appl. Phys. 119 015302
[16] Xiao Y J, Xing X W, Cui W W, Zhou Q, and Liu W J 2023 Chin. Phys. Lett. 40 054201
[17] Yu Z H, Wang Y G, Zhang X, Tian J R, and Song Y R 2014 Laser Phys. 24 015105
[18] Lang Y, Peng Z Y, and Zhao Z X 2022 Chin. Phys. Lett. 39 114201
[19] Shen J P, Huang X, Jiang S T, Jiang R R, Wang H Y, Lu P, Jiao M Y 2022 Chin. Phys. Lett. 39 104201
[20] Ahmad H, Yusoff N, and Reduan S A 2022 Infrared Phys. & Technol. 125 104228
[21] Kowalczyk M, Boguslawski J, Stachowiak D, Tarka J, Zybala R, Mars K, Mikula A, Sotor J Z, and Abramski K M 2016 Proc. SPIE 9893 1
[22] Sotor J, Sobon G, and Abramski K M 2014 Opt. Express 22 13244
[23] Ma X H, Chen W, Tong L, Liu S Q, Dai W W, Ye S S, Zheng Z Q, Wang Y Y, Zhou Y, Zhang W, Fang W T, Liao M S, and Gao W Q 2021 Opt. Laser Technol. 143 107286
[24] Li K X, Tian J R, Song Y R, Liu J H, Guoyu H Y, Wang M, and Fang X H 2016 Opt. Eng. 55 036110
[25] Xu Y H, Xie H H, Jiang G B, Miao L L, Wang K, Tang S Y, Zhang H, and Bao Q L 2017 Opt. Commun. 395 55
[26] Han X L, Zhang H N, Zhang C, Li C H, Guo Q X, Gao J J, and Man B Y 2019 Appl. Opt. 58 2695
[27] Haris H, Muhammad A R, Tan S J, Markom A M, Hasnan M M, and Saad I 2022 Infrared Phys. & Technol. 123 104154
[28] Chi C, Koo J, and Lee J H 2014 Laser Phys. 24 105106
[29] Li L, Yan P G, Wang Y G, Sun H, and Si J H 2015 Chin. Phys. B 24 124204
[30] Jiang G B, Zhou Y, Wang L L, and Chen Y 2018 Adv. Condens. Matter Phys. 2018 7578050
[31] Ma Y, Li W J, Xu Y F, Liu J Q, Zhou N, Yang K, Zhang J C, Zhai S Q, Wang L J, and Liu F Q 2023 Chin. Phys. Lett. 40 014201
[32] Sun Y J, Lee C K, Xu J L, Zhu Z J, Wang Y Q, Gao S F, You Z Y, and Tu C Y 2015 Photonics Res. 3 A97
[33] Huang K W, Wang X, Wu L, and Xiong H 2023 Chin. Phys. Lett. 40 104201
[34] Haris H, Batumalay M, Tan S J, Markom A M, Muhammad A R, Hasnan M M, and Saad I 2022 Crystals 12 489
[35] Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, He S Q, and Wang Y J 2022 Chin. Phys. Lett. 39 123401
[36] Ahmad H, Samion M Z, and Ismail M F 2022 J. Lumin. 252 119348
[37] Ni X, Jia K P, Wang X H, Liu H Y, Guo J, Huang S W, Yao B C, Sernicola N, Wang Z L, Lv X J, Xie Z D, and Zhu S N 2021 Chin. Phys. Lett. 38 064201
[38] Wu D D, Cai Z P, Zhong Y L, Peng J, Weng J, Chen N, and Xu H Y 2015 IEEE Photonics Technol. Lett. 27 2379
[39] Li W S, Peng J, Zhong Y L, Wu D D, Lin H Y, Cheng Y J, Luo Z Q, Xu H Y, and Cai Z P 2016 Opt. Mater. Express 6 2031
[40] Wang M X, Li P X, Xu Y T, Li S, and Yao C F 2022 Chin. Phys. Lett. 39 024201
[41] Lee J, Koo J, Jhon Y M, and Lee J H 2015 Opt. Express 23 6359
[42] Qin Z P, Zhou Y C, Xie G Q, Ma J G, and Qian L J 2022 Opt. Express 30 11174
Related articles from Frontiers Journals
[1] Xiao-Chuan Meng, Lu Li, Nai-Zhang Sun, Ze Xue, Qi Liu, Han Ye, and Wen-Jun Liu. Ultrafast Fiber Laser Based on Tungsten Sulphoselenide Materials[J]. Chin. Phys. Lett., 2023, 40(12): 114204
[2] Yue-Jia Xiao, Xiao-Wei Xing, Wen-Wen Cui, Yue-Qian Chen, Qin Zhou, and Wen-Jun Liu. Femtosecond Fiber Laser Based on BiSbTeSe$_{2}$ Quaternary Material Saturable Absorber[J]. Chin. Phys. Lett., 2023, 40(5): 114204
[3] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 114204
[4] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 114204
[5] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 114204
[6] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 114204
[7] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 114204
[8] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 114204
[9] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 114204
[10] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 114204
[11] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 114204
[12] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 114204
[13] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 114204
[14] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 114204
[15] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 114204
Viewed
Full text


Abstract