Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 114203    DOI: 10.1088/0256-307X/40/11/114203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Intensity-Dependent Dipole Phase in High-Order Harmonic Interferometry
Li Wang, Fan Xiao, Pan Song, Wenkai Tao, Xu Sun, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang*, and Zengxiu Zhao*
Department of Physics, National University of Defense Technology, Changsha 410073, China
Cite this article:   
Li Wang, Fan Xiao, Pan Song et al  2023 Chin. Phys. Lett. 40 114203
Download: PDF(4708KB)   PDF(mobile)(4730KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-order harmonics are ideal probes to resolve the attosecond dynamics of strong-field recollision processes. An easy-to-implement phase mask is utilized to covert the Gaussian beam to TEM01 transverse electromagnetic mode, allowing the realization of two-source interferometry of high-order harmonics. We experimentally measure the intensity dependence of dipole phase directly with high-order harmonic interferometry, in which the driving laser intensity can be precisely adjusted. The classical electron excursion simulations reproduce the experimental findings quite well, demonstrating that Coulomb potential plays subtle roles on movement of electrons for harmonics near the ionization threshold. This work is of great importance for precision measurements of ultrafast dynamics in strong-field physics.
Received: 27 August 2023      Published: 13 November 2023
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  32.30.-r (Atomic spectra?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/114203       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/114203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Wang
Fan Xiao
Pan Song
Wenkai Tao
Xu Sun
Jiacan Wang
Zhigang Zheng
Jing Zhao
Xiaowei Wang
and Zengxiu Zhao
[1] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, and Kapteyn H C 2012 Science 336 1287
[2] Gao J, Wu J, Lou Z, Yang F, Qian J, Peng Y, Leng Y, Zheng Y, Zeng Z, and Li R 2022 Optica 9 1003
[3] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, and Chang Z 2017 Nat. Commun. 8 186
[4] Zhao K, Zhang Q, Chini M, Wu Y, Wang X, and Chang Z 2012 Opt. Lett. 37 3891
[5] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, and Kleineberg U 2008 Science 320 1614
[6] Wang X W, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[7] Cederbaum L S and Zobeley J 1999 Chem. Phys. Lett. 307 205
[8] Lépine F, Ivanov M Y, and Vrakking M J J 2014 Nat. Photonics 8 195
[9] Calegari F, Ayuso D, Trabattoni A, Belshaw L, Camillis S D, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, and Nisoli M 2014 Science 346 336
[10] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, and Wörner H J 2015 Science 350 790
[11] Eckstein M, Yang C H, Kubin M, Frassetto F, Poletto L, Ritze H H, Vrakking M J J, and Kornilov O 2015 J. Phys. Chem. Lett. 6 419
[12] Huang Y D, Zhao J, Shu Z, Zhu Y L, Liu J, Dong W, Wang X, Lü Z, Zhang D, Yuan J, Chen J, and Zhao Z 2021 Ultrafast Sci. 2021 9837107
[13] Khalili K, Inhester L, Arnold C, Welsch R, Andreasen J W, and Santra R 2019 Struct. Dyn. 6 044102
[14] Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, and Itatani J 2019 Optica 6 1542
[15] Arbó D G, Ishikawa K L, Schiessl K, Persson E, and Burgdörfer J 2010 Phys. Rev. A 82 043426
[16] Smirnova O, Spanner M, and Ivanov M 2006 J. Phys. B 39 S307
[17] Smirnova O, Spanner M, and Ivanov M 2008 Phys. Rev. A 77 033407
[18] Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B, and Dudovich N 2010 Phys. Rev. Lett. 105 143904
[19] Torlina L and Smirnova O 2017 New J. Phys. 19 023012
[20] Azoury D, Krüger M, Bruner B D, Smirnova O, and Dudovich N 2021 Sci. Rep. 11 495
[21] Yue S J, Xue S, Du H C, and Lein M 2022 Phys. Rev. A 105 l041103
[22] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, and Agostini P 2001 Science 292 1689
[23] Muller H G 2002 Appl. Phys. B 74 s17
[24] Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, and Corkum P B 2002 Phys. Rev. Lett. 88 173903
[25] Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P, and DiMauro L F 2010 Nat. Photonics 4 352
[26] Yang Z, Cao W, Chen X, Zhang J, Mo Y, Xu H, Mi K, Zhang Q, Lan P, and Lu P 2020 Opt. Lett. 45 567
[27] Kim K T, Zhang C, Shiner A D, Kirkwood S E, Frumker E, Gariepy G, Naumov A, Villeneuve D M, and Corkum P B 2013 Nat. Phys. 9 159
[28] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, and Ivanov M Y 2009 Nature 460 972
[29] Corsi C, Pirri A, Sali E, Tortora A, and Bellini M 2006 Phys. Rev. Lett. 97 023901
[30] Lu J, Cunningham E F, You Y S, Reis D A, and Ghimire S 2019 Nat. Photonics 13 96
[31] Zerne R, Altucci C, Bellini M, Gaarde M B, Hänsch T W, L'Huillier A, Lyngå C, and Wahlström C G 1997 Phys. Rev. Lett. 79 1006
[32] Mustary M H, Laban D E, Wood J B O, Palmer A J, Holdsworth J, Litvinyuk I V, and Sang R T 2018 J. Phys. B 51 094006
[33] Camper A, Ruchon T, Gauthier D, Gobert O, Salières P, Carré B, and Auguste T 2014 Phys. Rev. A 89 043843
[34] Camper A, Ferré A, Lin N, Skantzakis E, Staedter D, English E, Manschwetus B, Burgy F, Petit S, Descamps D, Auguste T, Gobert O, Carré B, Salières P, Mairesse Y, and Ruchon T 2015 Photonics 2 184
[35] Wang X W, Chini M, Cheng Y, Wu Y, and Chang Z H 2013 Appl. Opt. 52 323
[36] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[37] Hostetter J A, Tate J L, Schafer K J, and Gaarde M B 2010 Phys. Rev. A 82 023401
[38]Zhao J 2013 Ph.D. Dessertation (Leibniz Universität Hannover)
Related articles from Frontiers Journals
[1] Li Wang, Xiaowei Wang, Fan Xiao, Jiacan Wang, Wenkai Tao, Dongwen Zhang, and Zengxiu Zhao. Chirp Compensation for Generating Ultrashort Attosecond Pulses with 800-nm Few-Cycle Pulses[J]. Chin. Phys. Lett., 2023, 40(11): 114203
[2] Shengjie Zhang, Yufei Pei, Shiqi Hu, Na Wu, Da-Qiang Chen, Chao Lian, and Sheng Meng. Light-Induced Phonon-Mediated Magnetization in Monolayer MoS$_{2}$[J]. Chin. Phys. Lett., 2023, 40(7): 114203
[3] Wenkai Tao, Li Wang, Pan Song, Fan Xiao, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang, and Zengxiu Zhao. Enhanced Extreme Ultraviolet Free Induction Decay Emission Assisted by Attosecond Pulses[J]. Chin. Phys. Lett., 2023, 40(6): 114203
[4] Xing Xu, Yindong Huang, Zhelin Zhang, Jinlei Liu, Jing Lou, Mingxin Gao, Shiyou Wu, Guangyou Fang, Zengxiu Zhao, Yanping Chen, Zhengming Sheng, and Chao Chang. Laser-Chirp Controlled Terahertz Wave Generation from Air Plasma[J]. Chin. Phys. Lett., 2023, 40(4): 114203
[5] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 114203
[6] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 114203
[7] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 114203
[8] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 114203
[9] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 114203
[10] Nana Dong, Yan Zhou, Shanbiao Pang, Xiaodong Huang, Ke Liu, Lunhua Deng, and Huailiang Xu. Strong-Field-Induced N$_{2}^{+}$ Air Lasing in Nitrogen Glow Discharge Plasma[J]. Chin. Phys. Lett., 2021, 38(4): 114203
[11] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 114203
[12] Fei Li, Yu-Jun Yang, Jing Chen, Xiao-Jun Liu, Zhi-Yi Wei, and Bing-Bing Wang. Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System[J]. Chin. Phys. Lett., 2020, 37(11): 114203
[13] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 114203
[14] Cong Guo, Shuai-Shuai Sun, Lin-Lin Wei, Huan-Fang Tian, Huai-Xin Yang, Shu Gao, Yuan Tan, and Jian-Qi Li. Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation[J]. Chin. Phys. Lett., 2020, 37(7): 114203
[15] Chong-Biao Luan, Hong-Tao Li. Influence of Hot-Carriers on the On-State Resistance in Si and GaAs Photoconductive Semiconductor Switches Working at Long Pulse Width[J]. Chin. Phys. Lett., 2020, 37(4): 114203
Viewed
Full text


Abstract