FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Intensity-Dependent Dipole Phase in High-Order Harmonic Interferometry |
Li Wang, Fan Xiao, Pan Song, Wenkai Tao, Xu Sun, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang*, and Zengxiu Zhao* |
Department of Physics, National University of Defense Technology, Changsha 410073, China |
|
Cite this article: |
Li Wang, Fan Xiao, Pan Song et al 2023 Chin. Phys. Lett. 40 114203 |
|
|
Abstract High-order harmonics are ideal probes to resolve the attosecond dynamics of strong-field recollision processes. An easy-to-implement phase mask is utilized to covert the Gaussian beam to TEM01 transverse electromagnetic mode, allowing the realization of two-source interferometry of high-order harmonics. We experimentally measure the intensity dependence of dipole phase directly with high-order harmonic interferometry, in which the driving laser intensity can be precisely adjusted. The classical electron excursion simulations reproduce the experimental findings quite well, demonstrating that Coulomb potential plays subtle roles on movement of electrons for harmonics near the ionization threshold. This work is of great importance for precision measurements of ultrafast dynamics in strong-field physics.
|
|
Received: 27 August 2023
Published: 13 November 2023
|
|
PACS: |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
|
|
|
[1] | Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, and Kapteyn H C 2012 Science 336 1287 |
[2] | Gao J, Wu J, Lou Z, Yang F, Qian J, Peng Y, Leng Y, Zheng Y, Zeng Z, and Li R 2022 Optica 9 1003 |
[3] | Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, and Chang Z 2017 Nat. Commun. 8 186 |
[4] | Zhao K, Zhang Q, Chini M, Wu Y, Wang X, and Chang Z 2012 Opt. Lett. 37 3891 |
[5] | Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, and Kleineberg U 2008 Science 320 1614 |
[6] | Wang X W, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 |
[7] | Cederbaum L S and Zobeley J 1999 Chem. Phys. Lett. 307 205 |
[8] | Lépine F, Ivanov M Y, and Vrakking M J J 2014 Nat. Photonics 8 195 |
[9] | Calegari F, Ayuso D, Trabattoni A, Belshaw L, Camillis S D, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, and Nisoli M 2014 Science 346 336 |
[10] | Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, and Wörner H J 2015 Science 350 790 |
[11] | Eckstein M, Yang C H, Kubin M, Frassetto F, Poletto L, Ritze H H, Vrakking M J J, and Kornilov O 2015 J. Phys. Chem. Lett. 6 419 |
[12] | Huang Y D, Zhao J, Shu Z, Zhu Y L, Liu J, Dong W, Wang X, Lü Z, Zhang D, Yuan J, Chen J, and Zhao Z 2021 Ultrafast Sci. 2021 9837107 |
[13] | Khalili K, Inhester L, Arnold C, Welsch R, Andreasen J W, and Santra R 2019 Struct. Dyn. 6 044102 |
[14] | Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, and Itatani J 2019 Optica 6 1542 |
[15] | Arbó D G, Ishikawa K L, Schiessl K, Persson E, and Burgdörfer J 2010 Phys. Rev. A 82 043426 |
[16] | Smirnova O, Spanner M, and Ivanov M 2006 J. Phys. B 39 S307 |
[17] | Smirnova O, Spanner M, and Ivanov M 2008 Phys. Rev. A 77 033407 |
[18] | Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B, and Dudovich N 2010 Phys. Rev. Lett. 105 143904 |
[19] | Torlina L and Smirnova O 2017 New J. Phys. 19 023012 |
[20] | Azoury D, Krüger M, Bruner B D, Smirnova O, and Dudovich N 2021 Sci. Rep. 11 495 |
[21] | Yue S J, Xue S, Du H C, and Lein M 2022 Phys. Rev. A 105 l041103 |
[22] | Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, and Agostini P 2001 Science 292 1689 |
[23] | Muller H G 2002 Appl. Phys. B 74 s17 |
[24] | Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, and Corkum P B 2002 Phys. Rev. Lett. 88 173903 |
[25] | Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P, and DiMauro L F 2010 Nat. Photonics 4 352 |
[26] | Yang Z, Cao W, Chen X, Zhang J, Mo Y, Xu H, Mi K, Zhang Q, Lan P, and Lu P 2020 Opt. Lett. 45 567 |
[27] | Kim K T, Zhang C, Shiner A D, Kirkwood S E, Frumker E, Gariepy G, Naumov A, Villeneuve D M, and Corkum P B 2013 Nat. Phys. 9 159 |
[28] | Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, and Ivanov M Y 2009 Nature 460 972 |
[29] | Corsi C, Pirri A, Sali E, Tortora A, and Bellini M 2006 Phys. Rev. Lett. 97 023901 |
[30] | Lu J, Cunningham E F, You Y S, Reis D A, and Ghimire S 2019 Nat. Photonics 13 96 |
[31] | Zerne R, Altucci C, Bellini M, Gaarde M B, Hänsch T W, L'Huillier A, Lyngå C, and Wahlström C G 1997 Phys. Rev. Lett. 79 1006 |
[32] | Mustary M H, Laban D E, Wood J B O, Palmer A J, Holdsworth J, Litvinyuk I V, and Sang R T 2018 J. Phys. B 51 094006 |
[33] | Camper A, Ruchon T, Gauthier D, Gobert O, Salières P, Carré B, and Auguste T 2014 Phys. Rev. A 89 043843 |
[34] | Camper A, Ferré A, Lin N, Skantzakis E, Staedter D, English E, Manschwetus B, Burgy F, Petit S, Descamps D, Auguste T, Gobert O, Carré B, Salières P, Mairesse Y, and Ruchon T 2015 Photonics 2 184 |
[35] | Wang X W, Chini M, Cheng Y, Wu Y, and Chang Z H 2013 Appl. Opt. 52 323 |
[36] | Corkum P B 1993 Phys. Rev. Lett. 71 1994 |
[37] | Hostetter J A, Tate J L, Schafer K J, and Gaarde M B 2010 Phys. Rev. A 82 023401 |
[38] | Zhao J 2013 Ph.D. Dessertation (Leibniz Universität Hannover) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|