Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 114201    DOI: 10.1088/0256-307X/40/11/114201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Mechanical Characterization of Broadband Achromatic Optical Vortex Metalens
Zhechun Lu1, Yuehua Deng1, Yang Yu1*, Chengzhi Huang2, and Junbo Yang1
1College of Science, National University of Defense Technology, Changsha 410073, China
2Key Laboratory of Luminescence Analysisand Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
Cite this article:   
Zhechun Lu, Yuehua Deng, Yang Yu et al  2023 Chin. Phys. Lett. 40 114201
Download: PDF(6016KB)   PDF(mobile)(6041KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Metalenses, which may effectively manipulate the wavefront of incident light, have been proposed and extensively utilized in the development of various planar optical devices for specialized purposes. However, similar to traditional lenses, the metalens suffers from chromatic aberration problems due to the significant phase dispersion in each unit structure and the limited operational bandwidth. To mitigate the impact of chromatic aberration, we integrate a phase compensation approach with a novel utilization of a phase shift function to define the adjusted phase criterion satisfied by each $\alpha$-Si resonance unit. This approach may lead to development of an innovative optical tweezer known as an achromatic optical vortex metalens (AOVM), offering reliable focusing capabilities across the $1300$ nm and $1600$ nm incident light range. Numerical simulations are conducted to investigate the optical properties of $200$ nm diameter SiO$_{2}$ particles at the focal plane of the AOVM. The trapping ability of the AOVM is successfully validated, exhibiting favorable characteristics including constant optical force, stable kinematic state of trapped particles, and consistent capture positions, surpassing those of the optical vortex metalens.
Received: 21 August 2023      Published: 16 October 2023
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.82.Gw (Other integrated-optical elements and systems)  
  07.05.Tp (Computer modeling and simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/114201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/114201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhechun Lu
Yuehua Deng
Yang Yu
Chengzhi Huang
and Junbo Yang
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
[2] Ashkin A, Dziedzic J M, Bjorkholm J E, and Chu S 1986 Opt. Lett. 11 288
[3] Choudhary D, Mossa A, Jadhav M, and Cecconi C 2019 Biomolecules 9 23
[4] Baker J E, Badman R P, and Wang M D 2018 WIREs Nanomed. Nanobiotechnol. 10 e1477
[5] Estéve J 2013 Nat. Nanotechnol. 8 317
[6] Hu J, Bandyopadhyay S, Liu Y, and Shao L 2021 Front. Phys. 8 586087
[7] Yuan Q, Ge Q, Chen L, Zhang Y, Yang Y, Cao X, Wang S, Zhu S, and Wang Z 2023 Nanophotonics 12 2295
[8] Kazanskiy N L, Khonina S N, and Butt M A 2022 Nanomaterials 13 118
[9] Li A B, Singh S, and Sievenpiper D 2018 Nanophotonics 7 989
[10] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, and Cummer S A 2014 Nat. Commun. 5 5553
[11] Yu N F and Capasso F 2014 Nat. Mater. 13 139
[12] Yang J Y, Gurung S, Bej S, Ni P, and Howard L H W 2022 Rep. Prog. Phys. 85 036101
[13] Wang W, Yang Q, He S, Shi Y, Liu X, Sun J, Guo K, Wang L, and Guo Z 2021 Opt. Express 29 43270
[14] Jin Z W, Janoschka D, Deng J H, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu C, Lei D, Li G, Xiao S, Mei S, Giessen H, zu H F M, and Qiu C W 2021 eLight 1 5
[15] Wang W, Guo C, Zhao Z, Li J, and Shi Y 2020 Results Phys. 17 103033
[16] Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, and Tsai D P 2021 Nanomaterials 11 1730
[17] Markovich H, Shishkin I I, Hendler N, and Ginzburg P 2018 Nano Lett. 18 5024
[18] Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, and Chattham N 2019 Crystals 9 515
[19] Wang X Y, Dai Y M, Zhang Y Q, Min C J, and Yuan X C 2018 ACS Photon. 5 2945
[20] Peng M, Luo H, Zhang Z J, Kuang T F, Chen D B, Bai W, Chen Z J, Yang J B, and Xiao G Z 2021 Nanomaterials 11 3376
[21] Ng J, Lin Z, and Chan C T 2010 Phys. Rev. Lett. 104 103601
[22] Mei S T, Huang K, Zhang T H, Mehmood M Q, Liu H, Lim C T, Teng J H, and Qiu C W 2016 Appl. Phys. Lett. 109 191107
[23] Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901
[24] Ruffner D B and Grier D G 2012 Phys. Rev. Lett. 108 173602
[25] Jones P H, Palmisano F, Bonaccorso F, Gucciardi P G, Calogero G, Ferrari A C, and Maragó O M 2009 ACS Nano 3 3077
[26] Friese M E J, Nieminen T A, Heckenberg N R, and Rubinsztein-Dunlop H 1998 Nature 394 348
[27] Zhao C L and Cai Y J 2011 Opt. Lett. 36 2251
[28] Mahmood N, Kim J, Naveed M A, Kim Y, Seong J, Kim S, Badloe T, Zubair M, Mehmood M Q, Massoud Y, and Rho J 2023 Nano Lett. 23 1195
[29] Shen Z, Xiang Z, Wang Z, Shen Y, and Zhang B 2021 Appl. Opt. 60 4820
[30] Zheng C L, Li J, Wang G C, Wang S L, Li J T, Zhao H L, Zang H P, Zhang Y, Zhang Y T, and Yao J Q 2021 Nanoscale 13 5809
[31] Ma Y B, Rui G H, Gu B, and Cui Y P 2017 Sci. Rep. 7 14611
[32] Li T Y, Xu X H, Fu B Y, Wang S M, Li B J, Wang Z L, and Zhu S N 2021 Photon. Res. 9 1062
[33] Qiao Z, Gong C, Liao Y, Wang C, Chan K K, Zhu S, Kim M, and Chen Y C 2022 Nano Lett. 22 1425
[34] Chen W T, Zhu A Y, and Capasso F 2020 Nat. Rev. Mater. 5 604
[35] Aieta F, Kats M A, Genevet P, and Capasso F 2015 Science 347 1342
[36] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, and Capasso F 2018 Nat. Nanotechnol. 13 220
[37] Svoboda K and Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247
[38] Wang S M, Wu P C, Su V C, Lai Y C, Hung C C, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, and Tsai D P 2017 Nat. Commun. 8 187
[39] Wang S M, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, and Tsai D P 2018 Nat. Nanotechnol. 13 227
[40] Zhan T, Xiong J H, Lee Y H, and Wu S T 2018 Opt. Express 26 35026
[41] Arbabi A, Horie Y, Bagheri M, and Faraon A 2015 Nat. Nanotechnol. 10 937
[42] Kruk S, Hopkins B, Kravchenko I I, Miroshnichenko A, Neshev D N, and Kivshar Y S 2016 APL Photon. 1 030801
[43] Novotny L, Bian R X, and Xie X S 1997 Phys. Rev. Lett. 79 645
[44] Yang A H J, Lerdsuchatawanich T, and Erickson D 2009 Nano Lett. 9 1182
[45] Juan M L, Righini M, and Quidant R 2011 Nat. Photon. 5 349
Related articles from Frontiers Journals
[1] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 114201
[2] HUANG Jin-Guo, XUAN Yi-Min, LI Qiang. Narrow-Band Thermal Radiation Based on Microcavity Resonant Effect[J]. Chin. Phys. Lett., 2014, 31(09): 114201
[3] ZHANG Dan, ZHENG Qiang. Effect of Phase Noise on the Stationary Entanglement of an Optomechanical System with Kerr Medium[J]. Chin. Phys. Lett., 2013, 30(2): 114201
[4] LING Lin, GUO Hong-Lian**, HUANG Lu, QU E, LI Zhao-Lin, LI Zhi-Yuan. The Measurement of Displacement and Optical Force in Multi-Optical Tweezers[J]. Chin. Phys. Lett., 2012, 29(1): 114201
[5] SHU Jing** . Electromagnetically Induced Transparency in an Optomechanical System[J]. Chin. Phys. Lett., 2011, 28(10): 114201
[6] YU Jie, ZHANG Wei YANG Jing, CONG Shu-Lin** . Field-Free Molecular Orientation with a Few Half-Cycle Pulses in the Terahertz Region[J]. Chin. Phys. Lett., 2011, 28(10): 114201
[7] XU Shu-Wu**, HUANG Yun-Xia, JI Xian-Ming . Field-Free Molecular Orientation Induced by Nonresonant Square Laser Pulses[J]. Chin. Phys. Lett., 2011, 28(4): 114201
[8] WANG Feng-Rui, LIU Hong-Jie, HUANG Jin, ZHOU Xin-Da, JIANG Xiao-Dong**, WU Wei-Dong, ZHENG Wan-Guo, JU Xin . Simulation of Light Intensification Induced by Defects of Polished Fused Silica[J]. Chin. Phys. Lett., 2011, 28(1): 114201
[9] CAO Li-Xin, ZHANG Feng-Xin, ZHU Yin-Fang, YANG Jin-Ling,. Ultrasensitive Detection of Infrared Photon Using Microcantilever: Theoretical Analysis[J]. Chin. Phys. Lett., 2010, 27(10): 114201
[10] REN Yu-Xuan, WU Jian-Guang, CHEN Man, LI Huang, LI Yin-Mei,. Stability of Novel Time-Sharing Dual Optical Tweezers Using a Rotating Tilt Glass Plate[J]. Chin. Phys. Lett., 2010, 27(2): 114201
[11] ZHANG Sheng, XIA Yuan-Qin, WANG Yu-Quan, LU Zhen-Zhong, CHEN De-Ying. Structural Deformation of CO22+ in Intense Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2009, 26(8): 114201
[12] GUO Wei, ZHU Jing-Yi, WANG Bing-Xing, WANG Yan-Qiu, WANG Li. Fragmentation of CO in Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2009, 26(1): 114201
Viewed
Full text


Abstract