Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 110304    DOI: 10.1088/0256-307X/40/11/110304
GENERAL |
Global Positioning Scheme via Quantum Teleportation
You-Quan Li1,2,3*, Li-Hua Lu2*, and Qi-Hang Zhu2
1Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
2School of Physics, Zhejiang University, Hangzhou 310058, China
3Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
Cite this article:   
You-Quan Li, Li-Hua Lu, and Qi-Hang Zhu 2023 Chin. Phys. Lett. 40 110304
Download: PDF(864KB)   PDF(mobile)(880KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum teleportation scheme is undoubtedly an inspiring theoretical discovery as an amazing application of quantum physics, which was experimentally realized several years later. For the purpose of quantum communication via this scheme, an entangled ancillary pair shared by Alice and Bob is the essential ingredient, and a quantum memory in Bob's system is necessary for him to keep the quantum state until the classical message from Alice arrives. Yet, the quantum memory remains a challenge in both technology and rationale. Here we show that quantum teleportation provides fresh perspectives in terms of an alternative scheme for global positioning system. Referring to fixed locations of Bob and Charlie, Alice can determine her relative position by comparing quantum states before and after teleporting around via Bob and Charlie successively. This may open up a new scene in the stage of the application of quantum physics without quantum memories.
Received: 07 July 2023      Published: 15 November 2023
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  06.67.-a  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/110304       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/110304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
You-Quan Li
Li-Hua Lu
and Qi-Hang Zhu
[1] Awschalom D D, Wrachtrup J, and Zhou B B 2018 Nat. Photonics 12 516
[2] Carariego M, Cirac J I, Zoller P et al. 2023 Quantum Sci. Technol. 8 023001
[3] van Enk S J, Cirac J I and Zoller P 1998 Science 279 205
[4] Duan L M, Cirac J I, and Zoller P 2001 Nature 414 413
[5] Gisin N and Thew R 2007 Nat. Photonics 1 165
[6] Steffen L et al. 2013 Nature 500 319
[7] Gao W B et al. 2013 Nat. Commun. 4 2744
[8] Bussiéres F et al. 2014 Nat. Photonics 8 775
[9] Pfaff W et al. 2014 Science 345 532
[10] Metcalf B J et al. 2014 Nat. Photonics 8 770
[11] Bennett C H, Brassard G, Crepeau C, Peres A, and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[12] Bennett C H, Brassard G, Popescu S, Smolin J A, and Wootters W K 1996 Phys. Rev. Lett. 76 722
[13] Bouwmeester D, Pan J W, Mattle K, Weinfurter H, and Zeilinger A 1997 Nature 390 575
[14] Boschi D, Branca S, Hardy L, and Popescu S 1998 Phys. Rev. Lett. 80 1121
[15] Wootters W K and Zurek W H 1982 Nature 299 802
[16] Briegel H J, Cirac J I, and Zoller P 1998 Phys. Rev. Lett. 81 5932
[17] Sangouard N, de Riedmatten N, and Gisin N 2011 Rev. Mod. Phys. 83 33
[18] van Loock P et al. 2006 Phys. Rev. Lett. 96 240501
[19] Yuan Z S, Chen Y A, Zhao B, Schmiedmayer J, and Pan J W 2008 Nature 454 1098
[20] Munro W J, Louis S G R, and Nemoto K 2008 Phys. Rev. Lett. 101 040502
[21] Sangouard N, Dubessy R, and Simon C 2009 Phys. Rev. A 79 042340
[22] Pirandola S, Ottaviani C, and Banchi L 2017 Nat. Commun. 8 15043
[23] Simon C, deRiedmatten H, Afzelius M, Zbinden H, and Gisin N 2007 Phys. Rev. Lett. 98 190503
[24] Nölleke C, Neuzner A, Reiserer A, Rempe G, and Ritter S 2013 Phys. Rev. Lett. 110 140403
[25] Li Z D et al. 2019 Nat. Photonics 13 644
[26] Wang S C, Zou W J, and Wang X B 2014 Phys. Rev. A 89 022318
[27] Shi T, Lu L H and Li Y Q 2021 Acta Phys. Sin. 70 230303 (in Chinese)
[28] Huang L, Zhang Y, and Yu S 2021 Chin. Phys. Lett. 38 040301
[29] Xia X X, Zhang Q, and Pan J W 2018 Quantum Sci. Technol. 3 014012
[30]Shor P W 1997 SIAM J. Sci. Stat. Comput. 26 1484
[31]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[32] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[33] Lloyd S 1996 Science 273 1073
[34] Georgescu I M, Ashhab S, and Nari F 2014 Rev. Mod. Phys. 86 153
[35] Xu P, Ma Y Q, Ren J G, Yong H L, Ralph T C, Liao S K, Yin J, Liu W Y, Cai W Q, and Pan J W 2019 Science 366 132
Related articles from Frontiers Journals
[1] Chang Niu and Sixia Yu. Wave-Particle Duality via Quantum Fisher Information[J]. Chin. Phys. Lett., 2023, 40(11): 110304
[2] Rui Li, Shuang He, Zhi-Jun Meng, Zhao Jin, and Wei-Jiang Gong. Engineering Knill–Laflamme–Milburn Entanglement via Dissipation and Coherent Population Trapping in Rydberg Atoms[J]. Chin. Phys. Lett., 2023, 40(6): 110304
[3] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 110304
[4] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110304
[5] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 110304
[6] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 110304
[7] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 110304
[8] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 110304
[9] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 110304
[10] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 110304
[11] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 110304
[12] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 110304
[13] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 110304
[14] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 110304
[15] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 110304
Viewed
Full text


Abstract