Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 110301    DOI: 10.1088/0256-307X/40/11/110301
GENERAL |
Wave-Particle Duality via Quantum Fisher Information
Chang Niu and Sixia Yu*
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Chang Niu and Sixia Yu 2023 Chin. Phys. Lett. 40 110301
Download: PDF(807KB)   PDF(mobile)(826KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum Fisher information (QFI) plays an important role in quantum metrology, placing the ultimate limit to how precise we can estimate some unknown parameter and thus quantifying how much information we can extract. We observe that both the wave and particle properties within a Mach–Zehnder interferometer can naturally be quantified by QFI. Firstly, the particle property can be quantified by how well one can estimate the a priori probability of the path taken by the particle within the interferometer. Secondly, as the interference pattern is always related to some phase difference, the wave property can be quantified by how well one can estimate the phase parameter of the original state. With QFI as the unified figure of merit for both properties, we propose a more general and stronger wave-particle duality relation than the original one derived by Englert.
Received: 09 August 2023      Editors' Suggestion Published: 15 November 2023
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/110301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang Niu and Sixia Yu
[1] Bohr N 1928 Nature 121 580
[2] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[3] Bartell L S 1980 Phys. Rev. D 21 1698
[4] Zeilinger A 1986 Physica B+C 137 235
[5] Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391
[6] Jaeger G, Shimony A, and Vaidman L 1995 Phys. Rev. A 51 54
[7] Englert B G 1996 Phys. Rev. Lett. 77 2154
[8] Yu S X, Liu N L, Li L, and Oh C H 2010 Phys. Rev. A 81 062116
[9] Coles P J, Kaniewski J, Wehner S 2014 Nat. Commun. 5 5814
[10] Dürr S and Rempe G 2000 Am. J. Phys. 68 1021
[11] Coles P J 2016 Phys. Rev. A 93 062111
[12] Bagan E, Bergou J A, Cottrell S S, and Hillery M 2016 Phys. Rev. Lett. 116 160406
[13] Siddiqui M A and Qureshi T 2015 Prog. Theor. Exp. Phys. 2015 083A02
[14] Bera M N, Qureshi T, Siddiqui M A, and Pati A K 2015 Phys. Rev. A 92 012118
[15] Bagan E, Calsamiglia J, Bergou J A, and Hillery M 2018 Phys. Rev. Lett. 120 050402
[16] Sun L L et al. 2017 Phys. Rev. A 95 022112
[17] Yu S 1997 Phys. Rev. Lett. 79 780
[18]Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)
[19]Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland Publishing Company)
[20] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[21] Yu S 2013 arXiv:1302.5311 [quant-ph]
Related articles from Frontiers Journals
[1] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 110301
[2] Shibo Xu, Zheng-Zhi Sun, Ke Wang, Liang Xiang, Zehang Bao, Zitian Zhu, Fanhao Shen, Zixuan Song, Pengfei Zhang, Wenhui Ren, Xu Zhang, Hang Dong, Jinfeng Deng, Jiachen Chen, Yaozu Wu, Ziqi Tan, Yu Gao, Feitong Jin, Xuhao Zhu, Chuanyu Zhang, Ning Wang, Yiren Zou, Jiarun Zhong, Aosai Zhang, Weikang Li, Wenjie Jiang, Li-Wei Yu, Yunyan Yao, Zhen Wang, Hekang Li, Qiujiang Guo, Chao Song, H. Wang, and Dong-Ling Deng. Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits[J]. Chin. Phys. Lett., 2023, 40(6): 110301
[3] Manchao Zhang, Jie Zhang, Wenbo Su, Xueying Yang, Chunwang Wu, Yi Xie, Wei Wu, and Pingxing Chen. Extension of Linear Response Regime in Weak-Value Amplification Technique[J]. Chin. Phys. Lett., 2023, 40(4): 110301
[4] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 110301
[5] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 110301
[6] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 110301
[7] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[8] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[9] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 110301
[10] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 110301
[11] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 110301
[12] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 110301
[13] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 110301
[14] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 110301
[15] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 110301
Viewed
Full text


Abstract