Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 107401    DOI: 10.1088/0256-307X/40/10/107401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coexistence of Zero-Dimensional Electride State and Superconductivity in AlH$_{2}$ Monolayer
Qiuping Yang, Xue Jiang*, and Jijun Zhao*
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China
Cite this article:   
Qiuping Yang, Xue Jiang, and Jijun Zhao 2023 Chin. Phys. Lett. 40 107401
Download: PDF(5099KB)   PDF(mobile)(5237KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electrides, which confine “excess anionic electrons” in subnanometer-sized cavities of a lattice, are exotic ionic crystals. We propose a non-stoichiometric strategy to realize intrinsic two-dimensional (2D) superconducting electride. AlH$_{2}$ monolayer, which is structurally identical to 1H-MoS$_{2}$, possesses zero-dimensionally confined anionic electrons in the interstitial sites of Al triangles, corresponding to a chemical formula of [AlH$_{2}$]$^{+}e^{-}$. The interaction between interstitial anionic electrons (IAEs) and host cation lattice mainly accounts for stabilization of 1H-AlH$_{2}$ electride. Impressively, 1H-AlH$_{2}$ monolayer is an intrinsic Bardeen–Cooper–Schrieffer superconductor with $T_{\rm c}=38$ K, which is the direct consequence of strong coupling of the H-dominated high electronic states with Al acoustic branch vibrations and mid-frequency H-derived phonon softening modes caused by Kohn anomalies. Under tensile strain, IAEs transform into itinerant electrons, favoring the formation of stable Cooper pairs. Therefore, $T_{\rm c}$ reaches up to 53 K at a biaxial fracture strain of 5%. Our findings provide valuable insights into the correlation between non-stoichiometric electrides and superconducting microscopic mechanisms at the 2D limit.
Received: 08 August 2023      Express Letter Published: 13 September 2023
PACS:  74.20.Pq (Electronic structure calculations)  
  74.25.-q (Properties of superconductors)  
  74.25.Ld (Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)  
  74.78-w  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/107401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/107401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiuping Yang
Xue Jiang
and Jijun Zhao
[1] Dye J L 2003 Science 301 607
[2] Dye J L 1993 Nature 365 10
[3] Li Z Y, Yang J L, Hou J G, and Zhu Q S 2003 J. Am. Chem. Soc. 125 6050
[4] Hosono H and Kitano M 2021 Chem. Rev. 121 3121
[5] Zhong X, Xu M L, Yang L L, Qu X, Yang L H, Zhang M, Liu H Y, and Ma Y M 2018 npj Comput. Mater. 4 70
[6] Wang J J, Zhu Q, Wang Z H, and Hosono H 2019 Phys. Rev. B 99 064104
[7] Wang J J, Hanzawa K, Hiramatsu H, Kim J, Umezawa N, Iwanaka K, Tada T, and Hosono H 2017 J. Am. Chem. Soc. 139 15668
[8] Zhang Y Q, Xiao Z W, Kamiya T, and Hosono H 2015 J. Phys. Chem. Lett. 6 4966
[9] Tada T, Takemoto S, Matsuishi S, and Hosono H 2014 Inorg. Chem. 53 10347
[10] Ming W M, Yoon M, Du M H, Lee K, and Kim S W 2016 J. Am. Chem. Soc. 138 15336
[11] Tsuji Y, Dasari P L V K, Elatresh S F, Hoffmann R, and Ashcroft N W 2016 J. Am. Chem. Soc. 138 14108
[12] Zhang Y W, Wang H, Wang Y C, Zhang L J, and Ma Y M 2017 Phys. Rev. X 7 011017
[13] Dye J L 1997 Inorg. Chem. 36 3816
[14] Dawes S B, Ward D L, Huang R H, and Dye J L 1986 J. Am. Chem. Soc. 108 3534
[15] Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, and Hosono H 2003 Science 301 626
[16] Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, and Hosono H 2007 J. Am. Chem. Soc. 129 7270
[17] Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, and Hosono H 2004 Adv. Mater. 16 685
[18] Lee K, Kim S W, Toda Y, Matsuishi S, and Hosono H 2013 Nature 494 336
[19] Zhang Y Q, Wang B S, Xiao Z W, Lu Y F, Kamiya T, Uwatoko Y, Kageyama H, and Hosono H 2017 npj Quantum Mater. 2 45
[20] Lv B, Zhu X Y, Lorenz B, Wei F Y, Xue Y Y, Yin Z P, Kotliar G, and Chu C W 2013 Phys. Rev. B 88 134520
[21] Pereira Z S, Faccin G M, and da Silva E Z 2021 J. Phys. Chem. C 125 8899
[22] Wan Z Y, Zhang C, Yang T Y, Xu W J, and Zhang R Q 2022 New J. Phys. 24 113012
[23] Zhao Z Y, Zhang S T, Yu T, Xu H Y, Bergara A, and Yang G C 2019 Phys. Rev. Lett. 122 97002
[24] Zhang X H, Yao Y S, Ding S C, Bergara A, Li F, Liu Y, Zhou X F, and Yang G C 2023 Phys. Rev. B 107 L100501
[25] Gallop J and Hao L 2016 ACS Nano 10 8128
[26] de Franceschi S, Kouwenhoven L, Schönenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703
[27] Huefner M, May C, Kičin S, Ensslin K, Ihn T, Hilke M, Suter K, de Rooij N F, and Staufer U 2009 Phys. Rev. B 79 134530
[28] Ge Y F, Guan S, and Liu Y 2017 New J. Phys. 19 123020
[29] Zeng X Z, Zhao S T, Li Z Y, and Yang J L 2018 Phys. Rev. B 98 155443
[30] Qiu X L, Zhang J F, Yang H C, Lu Z Y, and Liu K 2022 Phys. Rev. B 105 165101
[31] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73
[32] Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J, and Cui T 2014 Sci. Rep. 4 6968
[33] Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[34] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528
[35] Pickard C J and Needs R J 2010 Nat. Mater. 9 624
[36] Nakashima P N H, Smith A E, Etheridge J, and Muddle B C 2011 Science 331 1583
[37] Gubser D U and Webb A W 1975 Phys. Rev. Lett. 35 104
[38] Ataca C and Ciraci S 2011 J. Phys. Chem. C 115 13303
[39] Sun M L and Schwingenschlögl U 2020 Chem. Mater. 32 4795
[40] Guan J, Zhu Z, and Tománek D 2014 Phys. Rev. Lett. 113 46804
[41] Yan X, Ding S C, Zhang X H, Bergara A, Liu Y, Wang Y, Zhou X F, and Yang G 2022 Phys. Rev. B 106 14514
[42]Kittel C 1976 Introduction to Solid State Physics (New York: Wiley)
[43] Brower F M, Matzek N E, Reigler P F, Rinn H W, Roberts C B, Schmidt D L, Snover J A, and Terada K 1976 J. Am. Chem. Soc. 98 2450
[44] Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354
[45] Zhang X, Xiao Z, Lei H, Toda Y, Matsuishi S, Kamiya T, Ueda S, and Hosono H 2014 Chem. Mater. 26 6638
[46] Dilmi S, Saib S, and Bouarissa N 2018 Curr. Appl. Phys. 18 1338
[47] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, and Ma Y 2016 Phys. Rev. Lett. 116 57002
[48] Margine E R and Giustino F 2014 Phys. Rev. B 90 14518
[49] Han Y L, Li Y P, Yang L, Liu H D, Jiao N, Wang B T, Lu H Y, and Zhang P 2023 Mater. Today Phys. 30 100954
[50] Jiménez Sandoval S, Yang D, Frindt R F, and Irwin J C 1991 Phys. Rev. B 44 3955
[51] Wang X M, Wang Y, Wang J J, Pan S N, Lu Q, Wang H T, Xing D, and Sun J 2022 Phys. Rev. Lett. 129 246403
[52] Zhang X H, Li F, Bergara A, and Yang G C 2021 Phys. Rev. B 104 134505
[53] Wang Q, Cui W, Gao K, Chen J, Gu T, Liu M, Hao J, Shi J, and Li Y 2022 Phys. Rev. B 106 54519
[54] McMillan W L 1968 Phys. Rev. 167 331
[55] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[56] Carbotte J P 1990 Rev. Mod. Phys. 62 1027
[57] Oliveira L N, Gross E K U, and Kohn W 1988 Phys. Rev. Lett. 60 2430
[58]Migdal A B 1968 Sov. Phys.-JETP 35 996
[59]Eliashberg G M 1960 Sov. Phys.-JETP 38 966
[60] Liu P F, Zheng F P, Li J Y, Si J G, Wei L M, Zhang J R, and Wang B T 2022 Phys. Rev. B 105 245420
[61] Choi H J, Roundy D, Sun H, Cohen M L, and Louie S G 2002 Nature 418 758
[62] An Y P, Li J, Wang K, Wang G T, Gong S J, Ma C L, Wang T X, Jiao Z Y, Dong X, Xu G L, Wu R Q, and Liu W M 2021 Phys. Rev. B 104 134510
[63] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, and Feng D L 2014 Nat. Commun. 5 5044
[64] Qi Y P, Sadi M A, Hu D, Zheng M, Wu Z P, Jiang Y C, and Chen Y P 2023 Adv. Mater. 35 2205714
[65] Si C, Liu Z, Duan W H, and Liu F 2013 Phys. Rev. Lett. 111 196802
[66] Xiao R C, Shao D F, Lu W J, Lv H Y, Li J Y, and Sun Y P 2016 Appl. Phys. Lett. 109 122604
Related articles from Frontiers Journals
[1] Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang, Na Jiao, Mei-Yan Ni, Meng-Meng Zheng, Hong-Yan Lu, and Ping Zhang. Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)[J]. Chin. Phys. Lett., 2023, 40(9): 107401
[2] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 107401
[3] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 107401
[4] Hongen Zhu, Tongrui Li, Fanghang Yu, Yuliang Li, Sheng Wang, Yunbo Wu, Zhanfeng Liu, Zhengming Shang, Shengtao Cui, Yi Liu, Guobin Zhang, Lidong Zhang, Zhenyu Wang, Tao Wu, Jianjun Ying, Xianhui Chen, and Zhe Sun. Electronic Instability of Kagome Metal CsV$_{3}$Sb$_{5}$ in the $2 \times 2\times 2$ Charge Density Wave State[J]. Chin. Phys. Lett., 2023, 40(4): 107401
[5] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 107401
[6] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 107401
[7] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 107401
[8] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 107401
[9] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 107401
[10] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 107401
[11] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 107401
[12] A. Manzar, G. Murtaza, R. Khenata, Masood Yousaf, S. Muhammad, Hayatullah. Electronic and Optic Properties of Cubic Spinel CdX2O4 (X=In, Ga, Al) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2014, 31(06): 107401
[13] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic and Optical Properties of Spinel GeMg2O4 and GeCd2O4[J]. Chin. Phys. Lett., 2013, 30(12): 107401
[14] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, H. A. Rahnamaye Aliabad, M. R. Sahar . An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method[J]. Chin. Phys. Lett., 2013, 30(7): 107401
[15] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Profile and Optical Response of Spinel MgIn2O4 through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(6): 107401
Viewed
Full text


Abstract