Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 104402    DOI: 10.1088/0256-307X/40/10/104402
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Inverse Design and Experimental Verification of Metamaterials for Thermal Illusion Using Genetic Algorithms
Zonggang He1, Kun Yuan1, Guohuan Xiong1,2*, and Jian Wang1*
1College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
2 School of Physical Science and Technology, Nanjing Normal University, Nanjing 210046, China
Cite this article:   
Zonggang He, Kun Yuan, Guohuan Xiong et al  2023 Chin. Phys. Lett. 40 104402
Download: PDF(5725KB)   PDF(mobile)(5733KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal metamaterials offer a promising avenue for creating artificial materials with unconventional physical properties, such as thermal cloak, concentrator, rotator, and illusion. However, designs and fabrication of thermal metamaterials are of challenge due to the limitations of existing methods on anisotropic material properties. We propose an evolutionary framework for designing thermal metamaterials using genetic algorithm optimization. Our approach encodes unit cells with different thermal conductivities and performs global optimization using the evolution-inspired operators. We further fabricate the thermal functional cells using 3D printing and verify their thermal illusion functionality experimentally. Our study introduces a new design paradigm for advanced thermal metamaterials that can manipulate heat flows robustly and realize functional thermal metadevices without anisotropic thermal conductivity. Our approach can be easily applied to fabrications in various fields such as thermal management and thermal sensing.
Received: 29 July 2023      Published: 01 October 2023
PACS:  44.10.+i (Heat conduction)  
  44.90.+c (Other topics in heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/104402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/104402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zonggang He
Kun Yuan
Guohuan Xiong
and Jian Wang
[1] Smith D R, Pendry J B, and Wiltshire M C 2004 Science 305 788
[2] Zhang S, Xia C, and Fang N 2011 Phys. Rev. Lett. 106 024301
[3] Chen H S, Zheng B, Shen L, Wang H P, Zhang X M, Zheludev N I, and Zhang B L 2013 Nat. Commun. 4 2652
[4] Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[5] Wang J, Dai G, and Huang J 2020 iScience 23 101637
[6] Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218
[7] Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488
[8] Peralta I, Fachinotti V D, and Álvarez H J C 2020 Adv. Eng. Mater. 22 1901034
[9]Xu L J and Huang J P 2023 Transformation Thermotics and Extended Theories, 1st edn (Singapore: Springer)
[10]Yeung W S and Yang R J 2022 Introduction to Thermal Cloaking Theory and Analysis in Conduction and Convection 1st edn (Singapore: Springer)
[11]Huang J P 2020 Theoretical Thermotics Transformation Thermotics and Extended Theories for Thermal Metamaterials 1st edn (Singapore: Springer)
[12] Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[13] Guenneau S, Amra C, and Veynante D 2012 Opt. Express 20 8207
[14] Yu G X, Lin Y F, Zhang G Q, Yu Z, Yu L L, and Su J 2011 Front. Phys. 6 70
[15] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[16] Sha W, Hu R, Xiao M, Chu S, Zhu Z, Qiu C W, and Gao L 2022 npj Comput. Mater. 8 179
[17] Sha W, Xiao M, Zhang J, Ren X, Zhu Z, Zhang Y, Xu G, Li H, Liu X, Chen X, Gao L, Qiu C W, and Hu R 2021 Nat. Commun. 12 7228
[18] Liu Y D, Zuo H Y, Xi W, Hu R, and Luo X B 2022 Adv. Mater. Technol. 7 2100821
[19] Hu R, Xi W, Liu Y D, Tang K C, Song J L, Luo X B, Wu J Q, and Qiu C W 2021 Mater. Today 45 120
[20] Sha W, Zhao Y, Gao L, Xiao M, and Hu R 2020 J. Appl. Phys. 128 045106
[21] Peng Y G, Li Y, Cao P C, Zhu X F, and Qiu C W 2020 Adv. Funct. Mater. 30 2002061
[22] Hong S, Shin S M, and Chen R K 2020 Adv. Funct. Mater. 30 1909788
[23] Zhou S L, Hu R, and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
[24] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B, and Qiu C W 2018 Adv. Mater. 30 1707237
[25] Hou Q W, Zhao X P, Meng T, and Liu C L 2016 Appl. Phys. Lett. 109 103506
[26] Han T C, Bai X, Thong J T L, Li B W, and Qiu C W 2014 Adv. Mater. 26 1731
[27] Zhu N Q, Shen X Y, and Huang J P 2015 AIP Adv. 5 053401
[28] Xu L J, Wang R Z, and Huang J P 2018 J. Appl. Phys. 123 245111
[29] He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
[30] Álvarez H J C, Fachinotti V D, Peralta I, and Tourn B A 2019 Numer. Heat Transfer Part A 76 648
[31] Fujii G and Akimoto Y 2019 Appl. Phys. Lett. 115 174101
[32] Fujii G and Akimoto Y 2019 Int. J. Heat Mass Transfer 137 1312
[33] Luo J W, Chen L, Wang Z H, and Tao W Q 2022 Appl. Therm. Eng. 216 119103
[34] Wang W, Ai Q, Shuai Y, and Tan H 2023 Int. J. Heat Mass Transfer 206 123959
[35] Xu X Q, Gu X D, and Chen S K 2023 Int. J. Heat Mass Transfer 202 123720
[36] Ji Q X, Chen X Y, Liang J, Fang G D, Laude V, Arepolage T, Euphrasie S, Iglesias M J A, Guenneau S, and Kadic M 2022 Int. J. Heat Mass Transfer 196 123149
[37] Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, and Rodriguez A W 2018 Nat. Photon. 12 659
[38] Liu B, Xu L, and Huang J 2021 J. Appl. Phys. 129 065101
[39] Liu B, Xu L, and Huang J 2021 J. Appl. Phys. 130 045103
[40] Zhang Q Y, Barri K, Yu H, Wan Z, Lu W Y, Luo J Z, and Alavi A H 2023 Adv. Intell. Syst. 5 2300019
[41]Haupt R L and Haupt S E 2004 Practical Genetic Algorithms 2nd edn (Hoboken, NJ: Wiley) pp xvii, 253
[42]Coley D A 1999 An Introduction to Genetic Algorithms for Scientists and Engineers (Singapore: World Scientific) pp xvi, 227
[43] Goldberg D E and Holland J H 1988 Mach. Learn. 3 95
[44] Katoch S, Chauhan S S, and Kumar V 2021 Multimed Tools Appl. 80 8091
[45] Srinivasan B, Vo T, Zhang Y, Gang O, Kumar S, and Venkatasubramanian V 2013 Proc. Natl. Acad. Sci. USA 110 18431
[46] Xu L J and Huang J P 2018 Phys. Lett. A 382 3313
[47] Konak A, Coit D W, and Smith A E 2006 Reliab. Eng. Syst. Saf. 91 992
Related articles from Frontiers Journals
[1] Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao, Xue-Feng Zhu, and Ying Li. Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect[J]. Chin. Phys. Lett., 2023, 40(10): 104402
[2] Qingru Shan, Chunrui Shao, Jun Wang, and Guodong Xia. Enhanced Thermal Invisibility Effect in an Isotropic Thermal Cloak with Bulk Materials[J]. Chin. Phys. Lett., 2023, 40(10): 104402
[3] Qi Lou and Ming-Gang Xia. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial[J]. Chin. Phys. Lett., 2023, 40(9): 104402
[4] Yuhang Wei and Dahai He. Inverse Design of Phononic Crystal with Desired Transmission via a Gradient-Descent Approach[J]. Chin. Phys. Lett., 2023, 40(9): 104402
[5] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 104402
[6] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 104402
[7] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 104402
[8] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 104402
[9] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 104402
[10] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 104402
[11] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 104402
[12] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 104402
[13] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 104402
[14] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 104402
[15] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 104402
Viewed
Full text


Abstract