Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 104201    DOI: 10.1088/0256-307X/40/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nonreciprocal Phonon Laser in an Asymmetric Cavity with an Atomic Ensemble
Kai-Wei Huang, Xin Wang, Qing-Yang Qiu, Long Wu, and Hao Xiong*
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article:   
Kai-Wei Huang, Xin Wang, Qing-Yang Qiu et al  2023 Chin. Phys. Lett. 40 104201
Download: PDF(1745KB)   PDF(mobile)(1782KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Phonon lasers, as a novel kind of lasers for generating coherent sound oscillation, has attracted extensive attention. Here, we theoretically propose a nonreciprocal phonon laser in a hybrid optomechanical system, which is composed of an asymmetric Fabry–Pérot cavity, an ensemble of $N$ identical two-level atoms, and a mechanical oscillator. The effective driving amplitude related to driving direction leads to an obvious difference in mechanical gain and threshold power, bringing about a nonreciprocal phonon laser. In addition, the dependence of the phonon laser on the atomic parameters is also discussed, including the decay rate of the atoms and the coupling strength between the atoms and the cavity field, which provides an additional degree of freedom to control the phonon laser action. Our work provides a path to realizing a phonon laser in an atoms-cavity optomechanical system and may aid the manufacture of directional coherent phonon sources.
Received: 25 June 2023      Published: 03 October 2023
PACS:  42.50.-p (Quantum optics)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/104201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai-Wei Huang
Xin Wang
Qing-Yang Qiu
Long Wu
and Hao Xiong
[1] Metzger C H and Karrai K 2004 Nature 432 1002
[2] Kleckner D and Bouwmeester D 2006 Nature 444 75
[3] Arcizet O, Briant T, Heidmann A, and Pinard M 2006 Phys. Rev. A 73 033819
[4] Ian H, Gong Z R, Liu Y X, Sun C P, and Nori F 2008 Phys. Rev. A 78 013824
[5] Marquardt F, Chen J P, Clerk A A, and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[6] Schliesser A, Rivière R, Anetsberger G, Arcizet O, and Kippenberg T J 2008 Nat. Phys. 4 415
[7] Lai D G, Zou F, Hou B P, Xiao Y F, and Liao J Q 2018 Phys. Rev. A 98 023860
[8] Zhang J Q, Li Y, Feng M, and Xu Y 2012 Phys. Rev. A 86 053806
[9] Xiong H, Si L G, and Wu Y 2017 Appl. Phys. Lett. 110 171102
[10] Xiong H, Liu Z X, and Wu Y 2017 Opt. Lett. 42 3630
[11] Schreppler S, Spethmann N, Brahms N, Botter T, Barrios M, and Stamper-Kurn D M 2014 Science 344 1486
[12] Matsumoto N, Lopez S B C N, Sugawara M, Suzuki S, Abe N, Komori K, Michimura Y, Aso Y, and Edamatsu K 2019 Phys. Rev. Lett. 122 071101
[13] Meers B and MacDonald N 1989 Phys. Rev. A 40 3754
[14] Caves C M 1980 Phys. Rev. Lett. 45 75
[15] Kippenberg T J and Vahala K J 2008 Science 321 1172
[16] Aspelmeyer M, Kippenberg T J, and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[17] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, and Kippenberg T J 2010 Science 330 1520
[18] Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L, and Nori F 2015 Sci. Rep. 5 9663
[19] Chembo Y K, Strekalov D V, and Yu N 2010 Phys. Rev. Lett. 104 103902
[20] Xiong H, Si L G, Zheng A S, Yang X, and Wu Y 2012 Phys. Rev. A 86 013815
[21] Rabl P 2011 Phys. Rev. Lett. 107 063601
[22] Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601
[23] Wang K, Wu Q, Yu Y F, and Zhang Z M 2019 Phys. Rev. A 100 053832
[24] Shen S T, Qu Y, Li J H, and Wu Y 2019 Phys. Rev. A 100 023814
[25] Ho M, Oudot E, Bancal J D, and Sangouard N 2018 Phys. Rev. Lett. 121 023602
[26] Hu C S, Yang Z B, Wu H, Li Y, and Zheng S B 2018 Phys. Rev. A 98 023807
[27] Kong C, Liu J, and Xiong H 2023 Front. Phys. 18 12501
[28] Grudinin I S, Lee H, Painter O, and Vahala K J 2010 Phys. Rev. Lett. 104 083901
[29] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, and Nori F 2014 Phys. Rev. Lett. 113 053604
[30] He B, Yang L, and Xiao M 2016 Phys. Rev. A 94 031802
[31] Lü H, Özdemir S K, Kuang L M, Nori F, and Jing H 2017 Phys. Rev. Appl. 8 044020
[32] Zhang Y L, Zou C L, Yang C S, Jing H, Dong C H, Guo G C, and Zou X B 2018 New J. Phys. 20 093005
[33] Lin Q, He B, and Xiao M 2021 Phys. Rev. Res. 3 L032018
[34] Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, and Udem T 2009 Nat. Phys. 5 682
[35] Kabuss J, Carmele A, Brandes T, and Knorr A 2012 Phys. Rev. Lett. 109 054301
[36] Khaetskii A, Golovach V N, Hu X, and Žutić I 2013 Phys. Rev. Lett. 111 186601
[37] Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045
[38] Kemiktarak U, Durand M, Metcalfe M, and Lawall J 2014 Phys. Rev. Lett. 113 030802
[39] Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, Marsili F, Shaw M D, and Painter O 2015 Nature 520 522
[40] Ganesan A, Do C, and Seshia A 2017 Phys. Rev. Lett. 118 033903
[41] Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577
[42] Wang X, Yang W X, Chen A X, Li L, Shui T, Li X, and Wu Z 2022 Quantum Sci. Technol. 7 015025
[43] Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, and Molenkamp L W 1999 Nature 402 787
[44] Borlenghi S, Wang W, Fangohr H, Bergqvist L, and Delin A 2014 Phys. Rev. Lett. 112 047203
[45] Mahmoud A M, Davoyan A R, and Engheta N 2015 Nat. Commun. 6 8359
[46] Hamann A R, Müller C, Jerger M, Zanner M, Combes J, Pletyukhov M, Weides M, Stace T M, and Fedorov A 2018 Phys. Rev. Lett. 121 123601
[47] Dötsch H, Bahlmann N, Zhuromskyy O, Hammer M, Wilkens L, Gerhardt R, Hertel P, and Popkov A F 2005 J. Opt. Soc. Am. B 22 240
[48] Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M, and Kottos T 2013 Phys. Rev. Lett. 110 234101
[49] Peng B, Özdemir K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394
[50] Del Bino L, Silver J M, Woodley M T M, Stebbings S L, Zhao X, and Del'Haye P 2018 Optica 5 279
[51] Kong C, Xiong H, and Wu Y 2019 Phys. Rev. Appl. 12 034001
[52] Sounas D L and Alú A 2017 Nat. Photon. 11 774
[53] Xue W S, Shen H Z, and Yi X X 2020 Opt. Lett. 45 4424
[54] Jiang Y, Maayani S, Carmon T, Nori F, and Jing H 2018 Phys. Rev. Appl. 10 064037
[55] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M, and Jing H 2020 Phys. Rev. Lett. 125 143605
[56] Zhang D W, Zheng L L, You C, Hu C S, Wu Y, and Lü X Y 2021 Phys. Rev. A 104 033522
[57] Wang X, Huang K W, and Xiong H 2023 Opt. Express 31 5492
[58] Xia X W, Xu J P, and Yang Y P 2014 Phys. Rev. A 90 043857
[59] Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, and Zhang T C 2019 Phys. Rev. Lett. 123 233604
[60] Xia X W, Zhang X Q, Xu J P, Li H Z, Fu Z Y, and Yang Y P 2021 Phys. Rev. A 104 063713
[61] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, and Harris J G E 2008 Nature 452 72
[62] Akulshin A M, Barreiro S, and Lezama A 1998 Phys. Rev. A 57 2996
[63] Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X, and Wu J H 2015 Opt. Commun. 338 569
[64] Liu Z X, Xiong H, and Wu Y 2018 Phys. Rev. A 97 013801
[65]Gardiner C, Zoller P, and Zoller P 2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer Science & Business Media)
[66] Baumann K, Guerlin C, Brennecke F, and Esslinger T 2010 Nature 464 1301
[67] Jiang Y J, Lv H, and Jing H 2018 Chin. Phys. Lett. 35 044205
[68] Coulais C, Sounas D, and Alù A 2017 Nature 542 461
Related articles from Frontiers Journals
[1] Lei Xu, Ling-Xiao Wang, Guang-Jie Chen, Liang Chen, Yuan-Hao Yang, Xin-Biao Xu, Aiping Liu, Chuan-Feng Li, Guang-Can Guo, Chang-Ling Zou, and Guo-Yong Xiang. Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt[J]. Chin. Phys. Lett., 2023, 40(9): 104201
[2] Jian-Yin Huang, Peng-Jun Liang, Liang Zheng, Pei-Yun Li, You-Zhi Ma, Duan-Chen Liu, Jing-Hui Xie, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo. Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$[J]. Chin. Phys. Lett., 2023, 40(7): 104201
[3] Ze-Huan Chen, Fei-Yu Wang, Hua Chen, Jin-Cheng Lu, and Chen Wang. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System[J]. Chin. Phys. Lett., 2023, 40(5): 104201
[4] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 104201
[5] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 104201
[6] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 104201
[7] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 104201
[8] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 104201
[9] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 104201
[10] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 104201
[11] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 104201
[12] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 104201
[13] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 104201
[14] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 104201
[15] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 104201
Viewed
Full text


Abstract