Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 100504    DOI: 10.1088/0256-307X/40/10/100504
GENERAL |
Quantum Squeezing of Matter-Wave Solitons in Bose–Einstein Condensates
Jinzhong Zhu1 and Guoxiang Huang1,2,3*
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
2NYU-ECNU Joint Institute of Physics, New York University Shanghai, Shanghai 200062, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
Jinzhong Zhu and Guoxiang Huang 2023 Chin. Phys. Lett. 40 100504
Download: PDF(1947KB)   PDF(mobile)(1966KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the quantum squeezing of matter-wave solitons in atomic Bose–Einstein condensates. By calculating quantum fluctuations of the solitons via solving the Bogoliubov–de Gennes equations, we show that significant quantum squeezing can be realized for both bright and dark solitons. We also show that the squeezing efficiency of the solitons can be enhanced and manipulated by atom–atom interaction and soliton blackness. The results reported here are beneficial not only for understanding quantum property of matter-wave solitons, but also for promising applications of Bose-condensed quantum gases.
Received: 10 July 2023      Published: 26 September 2023
PACS:  05.45  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/100504       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/100504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinzhong Zhu and Guoxiang Huang
[1]Ablowitz M J and Clarkson P A 2003 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press)
[2] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[3] Fedichev P O, Muryshev A E, and Shlyapnikov G V 1999 Phys. Rev. A 60 3220
[4] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, and Phillips W D 2000 Science 287 97
[5] Huang G X, Velarde M G, and Makarov V A 2001 Phys. Rev. A 64 013617
[6] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, and Salomon C 2002 Science 296 1290
[7] Strecker K E, Partridge G B, Truscott A G, and Hulet R G 2002 Nature 417 150
[8] Muryshev A, Shlyapnikov G V, Ertmer W, Sengstock K, and Lewenstein M 2002 Phys. Rev. Lett. 89 110401
[9] Huang G X, Szeftel J, and Zhu S H 2002 Phys. Rev. A 65 053605
[10] Sinha S, Cherny A Y, Kovrizhin D, and Brand J 2006 Phys. Rev. Lett. 96 030406
[11] Jackson B, Proukakis N P, Barenghi C F 2007 Phys. Rev. A 75 051601
[12] Stellmer S, Becker C, Soltan-Panahi P, Richter E M, Dörscher S, Baumert M, Kronjäger J, Bongs K, and Sengstock K 2008 Phys. Rev. Lett. 101 120406
[13] Cockburn S P, Nistazakis H E, Horikis T P, Kevrekidis P G, Proukakis N P, and Frantzeskakis D J 2010 Phys. Rev. Lett. 104 174101
[14] Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A, and Cornish S L 2013 Nat. Commun. 4 1865
[15] Xu Y, Zhang Y, and Wu B 2013 Phys. Rev. A 87 013614
[16] Nguyen J H V, Dyke P, Luo D, Malomed B A, and Hulet R G 2014 Nat. Phys. 10 918
[17] Zhang Y C, Zhou Z M, Malomed B A, and Pu H 2015 Phys. Rev. Lett. 115 253902
[18] Jiang X D, Fan Z W, Chen Z P, Pang W, Li Y Y, and Malomed B A 2016 Phys. Rev. A 93 023633
[19] Nguyen J H V, Luo D, and Hulet R G 2017 Science 356 422
[20] Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L, and Tarruell L 2018 Phys. Rev. Lett. 120 135301
[21] Hang C, Gabadadze G, and Huang G 2019 Phys. Lett. B 793 390
[22] Mateo A M and Yu X Q 2022 Phys. Rev. A 105 L021301
[23] Shi Z Y and Huang G X 2023 Phys. Rev. E 107 024214
[24]Pethick C J and Smith H 2008 Bose–Einstein Condensation in Dilute Gases 2nd edn (Cambridge: Cambridge University Press)
[25] Lewenstein M and You L 1996 Phys. Rev. Lett. 77 3489
[26] Yi S, Müstecaplıoğlu Ö E, and You L 2003 Phys. Rev. Lett. 90 140404
[27] Dziarmaga J 2004 Phys. Rev. A 70 063616
[28] Villari L D M, Faccio D, Biancalana F, and Conti C 2018 Phys. Rev. A 98 043859
[29]Significant effect may occur when soliton moves to the boundary of the cigar-shaped condensate even if is small. For simplicity, we do not consider such a situation here.
[30]Bogoliubov N 1947 J. Phys. (Moscow) 11 23
[31] Konotop V V, Yang J, and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[32] Ashida Y, Gong Z P, and Ueda M 2020 Adv. Phys. 69 249
[33] Huang G X, Deng L, Yan J R, and Hu B 2006 Phys. Lett. A 357 150
[34] Huang G X and Compagnon N 2008 Phys. Lett. A 372 321
[35] Zhu J Z, Zhang Q, and Huang G X 2021 Phys. Rev. A 103 063512
[36] Zhu J Z and Huang G X 2022 Phys. Rev. A 105 033515
[37] Zhu J Z, Mu Y, and Huang G X 2023 Phys. Rev. A 107 033517
[38] Ma J, Wang X G, Sun C P, and Nori F 2011 Phys. Rep. 509 89
[39] Schnabel R 2017 Phys. Rep. 684 1
[40] Sinatra A 2022 Appl. Phys. Lett. 120 120501
[41] Haus H A and Lai Y 1990 J. Opt. Soc. Am. B 7 386
[42]Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 100504
[2] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 100504
[3] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 100504
[4] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 100504
[5] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 100504
[6] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 100504
[7] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100504
[8] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 100504
[9] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100504
[10] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100504
[11] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 100504
[12] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 100504
[13] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 100504
[14] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 100504
[15] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 100504
Viewed
Full text


Abstract