Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 100502    DOI: 10.1088/0256-307X/40/10/100502
GENERAL |
Quantum Brayton Refrigeration Cycle with Finite-Size Bose–Einstein Condensates
Jiehong Yuan1, Huilin Ruan1, Dehua Liu1, Jizhou He1, and Jianhui Wang1,2*
1Department of Physics, Nanchang University, Nanchang 330031, China
2State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
Cite this article:   
Jiehong Yuan, Huilin Ruan, Dehua Liu et al  2023 Chin. Phys. Lett. 40 100502
Download: PDF(1716KB)   PDF(mobile)(2380KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a quantum Brayton refrigeration cycle consisting of two isobaric and two adiabatic processes, using an ideal Bose gas of finite particles confined in a harmonic trap as its working substance. Quite generally, such a machine falls into three different cases, classified as the condensed region, non-condensed phase, and regime across the critical point. When the refrigerator works near the critical region, both figure of merit and cooling load are significantly improved due to the singular behavior of the specific heat, and the coefficient of performance at maximum figure of merit is much larger than the Curzon–Ahlborn value. With the machine in the non-condensed regime, the coefficient of performance for maximum figure of merit agrees well with the Curzon–Ahlborn value.
Received: 27 July 2023      Published: 01 October 2023
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.70.Jk (Critical point phenomena)  
  05.70.Fh (Phase transitions: general studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/100502       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/100502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiehong Yuan
Huilin Ruan
Dehua Liu
Jizhou He
and Jianhui Wang
[1] Wang L Q, Wang Z, Wang C, and Ren J 2022 Phys. Rev. Lett. 128 067701
[2] Wang Y and Tu Z C 2012 Phys. Rev. E 85 011127
[3] Chen J F, Sun C P, and Dong H 2019 Phys. Rev. E 100 032144
[4] Zhang Y C and He J Z 2013 Chin. Phys. Lett. 30 010501
[5] Saygın H and Şişman A 2001 Appl. Energy 69 77
[6] Lin B H and Chen J C 2003 Phys. Rev. E 68 056117
[7] He J Z, Xin Y, and He X 2007 Appl. Energy 84 176
[8] Bener C M, Brody D C, and Meister B K 2000 J. Phys. A 33 4427
[9] Leggio B and Antezza M 2016 Phys. Rev. E 93 022122
[10] Erdman P A, Cavina V, Fazio R, Taddei F, and Giovannetti V 2019 New J. Phys. 21 103049
[11] Quan H T, Zhang P, and Sun C P 2005 Phys. Rev. E 72 056110
[12] Kosloff R and Rezek Y 2017 Entropy 19 136
[13] Reid B, Pigeon S, Antezza M, and de Chiara G 2017 Europhys. Lett. 120 60006
[14] Abah O and Lutz E 2016 Europhys. Lett. 113 60002
[15] Frim A G and DeWeese M R 2022 Phys. Rev. E 105 L052103
[16] Zhang T, Liu W T, Chen P X, and Li C Z 2007 Phys. Rev. A 75 062102
[17] Funo K, Watanabe Y, and Ueda M 2013 Phys. Rev. A 88 052319
[18] Ji Y H, Hu J J, and Hu Y 2012 Chin. Phys. B 21 110304
[19] Francica G, Goold J, and Plastina F 2019 Phys. Rev. E 99 042105
[20] Camati P A, Santos J F G, and Serra R M 2019 Phys. Rev. A 99 062103
[21] Rahav S, Harbola U, and Mukamel S 2012 Phys. Rev. A 86 043843
[22] Wen J and Li G Q 2018 Chin. Phys. Lett. 35 060301
[23] Brandner K, Bauer M, and Seifert U 2017 Phys. Rev. Lett. 119 170602
[24] Yang Y Y, Li L J, Ye L, and Wang D 2022 Chin. Phys. B 31 100303
[25] Wang C and Chen Q H 2013 New J. Phys. 15 103020
[26] Fei Z Y, Quan H T, and Liu F 2018 Phys. Rev. E 98 012132
[27] Horowitz J M and Jacobs K 2014 Phys. Rev. E 89 042134
[28] Lin Z Y, Su S H, Chen J Y, Chen J C, and Santos J F G 2021 Phys. Rev. A 104 062210
[29] Chand S, Dasgupta S, and Biswas A 2021 Phys. Rev. E 103 032144
[30] Myers N M, Peña F J, Negrete O, Vargas P, Chiara G D, and Deffner S 2022 New J. Phys. 24 025001
[31] Gluza M, Sabino J, Ng N H Y, Vitagliano G, Pezzutto M, Omar Y, Mazets I, Huber M, Schmiedmayer J, and Eisert J 2021 PRX Quantum 2 030310
[32] Li J, Sherman E Y, and Ruschhaupt A 2022 Phys. Rev. A 106 L030201
[33] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[34] Li Z, Wang J Z, and Fu L B 2013 Chin. Phys. Lett. 30 010301
[35] Dai W S and Xie M 2004 Phys. Rev. E 70 016103
[36] Wang J H and Mang Y L 2010 J. Phys. B 43 175301
[37] Jiang J H, Entin-Wohlman O, and Imry Y 2012 Phys. Rev. B 85 075412
[38] Su G Z, Chen L W, and Chen J C 2014 Phys. Lett. A 378 1992
[39] Izumida Y, Okuda K, Hernández A C, and Roco J M M 2013 Europhys. Lett. 101 10005
[40] Allahverdyan A E, Hovhannisyan K, and Mahler G 2010 Phys. Rev. E 81 051129
[41] Wang Y, Li M, Tu Z C, Hernández A C, and Roco J M M 2012 Phys. Rev. E 86 011127
[42] Hu Y, Wu F, Ma Y, He J, Wang J, Hernández A C, and Roco J M M 2013 Phys. Rev. E 88 062115
[43] Hernández A C, Medina A, and Roco J M M 2015 New J. Phys. 17 070511
[44] Curzon F L and Ahlborn B 1975 Am. J. Phys. 43 22
[45] Luo X G, Liu N, and He J Z 2013 Phys. Rev. E 87 022139
[46] Liu H G, He J Z, Wang J H 2023 Chin. Phys. B 32 030503
[47] Yuan Y, Wang R, He J Z, Ma Y L, and Wang J H 2014 Phys. Rev. E 90 052151
[48] Romero-Rochı́n V 2005 Phys. Rev. Lett. 94 130601
[49] Grossmann S and Holthaus M 1995 Z. Naturforsch. A 50 921
[50] Grossmann S and Holthaus M 1995 Phys. Lett. A 208 188
[51]See the Supplemental Material for the detailed derivations of main-text equations and supplemental evidence.
[52]Pathria R K and Beale P D 2011 Statistical Mechanics 3rd edn (New York: Academic)
[53] Quan H T 2009 Phys. Rev. E 79 041129
[54]Perrot P 1998 A to Z of Thermodynamics (Oxford: Oxford University Press)
[55] Galve F, Pachon L A, and Zueco D 2010 Phys. Rev. Lett. 105 180501
Related articles from Frontiers Journals
[1] Yuhang Wei and Dahai He. Inverse Design of Phononic Crystal with Desired Transmission via a Gradient-Descent Approach[J]. Chin. Phys. Lett., 2023, 40(9): 100502
[2] Jie Ren. Geometric Thermoelectric Pump: Energy Harvesting beyond Seebeck and Pyroelectric Effects[J]. Chin. Phys. Lett., 2023, 40(9): 100502
[3] Ze-Huan Chen, Fei-Yu Wang, Hua Chen, Jin-Cheng Lu, and Chen Wang. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System[J]. Chin. Phys. Lett., 2023, 40(5): 100502
[4] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 100502
[5] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 100502
[6] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 100502
[7] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 100502
[8] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 100502
[9] Pei-Yan Peng, Chang-Kui Duan. A Maxwell Demon Model Connecting Information and Thermodynamics[J]. Chin. Phys. Lett., 2016, 33(08): 100502
[10] SU Hao, SHI Zhi-Cheng, HE Ji-Zhou. Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(10): 100502
[11] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 100502
[12] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 100502
[13] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 100502
[14] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 100502
[15] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 100502
Viewed
Full text


Abstract