Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 100501    DOI: 10.1088/0256-307X/40/10/100501
GENERAL |
A Hierarchy in Majorana Non-Abelian Tests and Hidden Variable Models
Peng Qian1 and Dong E. Liu2,1,3,4*
1Beijing Academy of Quantum Information Sciences, Beijing 100193, China
2State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
3Frontier Science Center for Quantum Information, Beijing 100184, China
4Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Peng Qian and Dong E. Liu 2023 Chin. Phys. Lett. 40 100501
Download: PDF(1565KB)   PDF(mobile)(1674KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recent progress of the Majorana experiments paves a way for the future tests of non-Abelian braiding statistics and topologically protected quantum information processing. However, a deficient design in those tests could be very dangerous and reach false-positive conclusions. A careful theoretical analysis is necessary so as to develop loophole-free tests. We introduce a series of classical hidden variable models to capture certain key properties of Majorana system: non-locality, topologically non-triviality, and quantum interference. Those models could help us to classify the Majorana properties and to set up the boundaries and limitations of Majorana non-Abelian tests: fusion tests, braiding tests and test set with joint measurements. We find a hierarchy among those Majorana tests with increasing experimental complexity.
Received: 02 July 2023      Editors' Suggestion Published: 22 September 2023
PACS:  05.30.Pr (Fractional statistics systems)  
  03.65.-w (Quantum mechanics)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/100501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Qian and Dong E. Liu
[1] Kitaev A Y 2003 Ann. Phys. 303 2
[2] Freedman M, Kitaev A, Larsen M, and Wang Z 2003 Bull. Amer. Math. Soc. 40 31
[3] Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[4] Leinaas J M and Myrheim J 1977 Il Nuovo Cimento B (1971-1996) 37 1
[5] Fredenhagen K, Rehren K H, and Schroer B 1989 Commun. Math. Phys. 125 201
[6] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[7] Read N and Green D 2000 Phys. Rev. B 61 10267
[8] Kitaev A Y 2001 Phys. Usp. 44 131
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Sato M, Takahashi Y, and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[11] Sau J D, Lutchyn R M, Tewari S, and Sarma S D 2010 Phys. Rev. Lett. 104 040502
[12] Lutchyn R M, Sau J D, and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[13] Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[14] Alicea J 2010 Phys. Rev. B 81 125318
[15] Alicea J 2012 Rep. Prog. Phys. 75 076501
[16] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2012 Science 336 1003
[17] Deng M, Yu C, Huang G, Larsson M, Caroff P, and Xu H 2012 Nano Lett. 12 6414
[18] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, and Marcus C M 2013 Phys. Rev. B 87 241401
[19] Finck A D K, van Harlingen D J, Mohseni P K, Jung K, and Li X 2013 Phys. Rev. Lett. 110 126406
[20] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, and Yazdani A 2014 Science 346 602
[21] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C 2016 Nature 531 206
[22] Deng M, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557
[23] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett. 116 257003
[24] Wang D F, Kong L Y, Fan P et al. 2018 Science 362 333
[25] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2019 Nat. Mater. 18 811
[26] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056
[27] Fornieri A, Whiticar A M, Setiawan F et al. 2019 Nature 569 89
[28] Ren H C, Pientka F, Hart S et al. 2019 Nature 569 93
[29] Chen C, Liu Q, Zhang T, Li D, Shen P, Dong X, Zhao Z X, Zhang T, and Feng D 2019 Chin. Phys. Lett. 36 057403
[30] Zhu S Y, Kong L Y, Cao L et al. 2020 Science 367 189
[31] Wang Z Y, Song H D, Pan D, Zhang Z T, Miao W T, Li R D, Cao Z, Zhang G, Liu L, Wen L J, Zhuo R, Liu D E, He K, Shang R, Zhao J, and Zhang H 2022 Phys. Rev. Lett. 129 167702
[32] Ménard G C, Anselmetti G L R, Martinez E A, Puglia D, Malinowski F K, Lee J S, Choi S, Pendharkar M, Palmstrøm C J, Flensberg K, Marcus C M, Casparis L, and Higginbotham A P 2020 Phys. Rev. Lett. 124 036802
[33] Puglia D, Martinez E A, Ménard G C, Pöschl A, Gronin S, Gardner G C, Kallaher R, Manfra M J, Marcus C M, Higginbotham A P, and Casparis L 2021 Phys. Rev. B 103 235201
[34] Wang J Y, van Loo N, Mazur G P, Levajac V, Malinowski F K, Lemang M, Borsoi F, Badawy G, Gazibegovic S, Bakkers E P A M, Quintero-Pérez M, Heedt S, and Kouwenhoven L P 2022 Phys. Rev. B 106 075306
[35] Aghaee M, Akkala A, Alam Z et al. (Microsoft Quantum) 2023 Phys. Rev. B 107 245423
[36] Pöschl A, Danilenko A, Sabonis D, Kristjuhan K, Lindemann T, Thomas C, Manfra M J, and Marcus C M 2022 Phys. Rev. B 106 L241301
[37] Banerjee A, Lesser O, Rahman M A, Thomas C, Wang T, Manfra M J, Berg E, Oreg Y, Stern A, and Marcus C M 2023 Phys. Rev. Lett. 130 096202
[38] Zhang H, Liu D E, Wimmer M, and Kouwenhoven L P 2019 Nat. Commun. 10 5128
[39] Cao Z, Chen S, Zhang G, and Liu D E 2023 Sci. Chin. Phys. Mech. & Astron. 66 267003
[40] Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R, and Beenakker C W J 2013 Phys. Rev. B 88 035121
[41] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, and Alicea J 2016 Phys. Rev. X 6 031016
[42] Clarke D J, Sau J D, and Tewari S 2011 Phys. Rev. B 84 035120
[43] van Heck B, Akhmerov A, Hassler F, Burrello M, and Beenakker C 2012 New J. Phys. 14 035019
[44] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, and Freedman M H 2017 Phys. Rev. B 95 235305
[45] Bell J S 1966 Rev. Mod. Phys. 38 447
[46] Clauser J F, Horne M A, Shimony A, and Holt R A 1969 Phys. Rev. Lett. 23 880
[47] de Lange G, van Heck B, Bruno A, van Woerkom D J, Geresdi A, Plissard S R, Bakkers E P A M, Akhmerov A R, and DiCarlo L 2015 Phys. Rev. Lett. 115 127002
[48] Larsen T W, Petersson K D, Kuemmeth F, Jespersen T S, Krogstrup P, Nygård J, and Marcus C M 2015 Phys. Rev. Lett. 115 127001
[49] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L, and Vandersypen L M K 2016 Phys. Rev. Appl. 5 044004
[50] Hays M, de Lange G, Serniak K, van Woerkom D J, Bouman D, Krogstrup P, Nygård J, Geresdi A, and Devoret M H 2018 Phys. Rev. Lett. 121 047001
[51] Sabonis D, Erlandsson O, Kringhøj A, van Heck B, Larsen T W, Petkovic I, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 156804
[52] Kroll J, Borsoi F, van der Enden K, Uilhoorn W, de Jong D, Quintero-Pérez M, van Woerkom D, Bruno A, Plissard S, Car D, Bakkers E, Cassidy M, and Kouwenhoven L 2019 Phys. Rev. Appl. 11 064053
[53] Larsen T W, Gershenson M E, Casparis L, Kringhøj A, Pearson N J, McNeil R P G, Kuemmeth F, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 056801
[54] van Zanten D M T, Sabonis D, Suter J et al. 2020 Nat. Phys. 16 663
[55] Bohm D 1952 Phys. Rev. 85 166
[56] Everett H 1957 Rev. Mod. Phys. 29 454
[57] Aspect A, Dalibard J, and Roger G 1982 Phys. Rev. Lett. 49 1804
[58] Gisin N 1991 Phys. Lett. A 154 201
[59] Mermin N D 1993 Rev. Mod. Phys. 65 803
[60] Bassi A and Ghirardi G 2003 Phys. Rep. 379 257
[61] Aaronson S 2005 Phys. Rev. A 71 032325
[62] Genovese M 2005 Phys. Rep. 413 319
[63] Leggett A J 2003 Found. Phys. 33 1469
[64] Spekkens R W 2007 Phys. Rev. A 75 032110
[65] Augusiak R, Demianowicz M, and Acín A 2014 J. Phys. A 47 424002
[66] Weihs G, Jennewein T, Simon C, Weinfurter H, and Zeilinger A 1998 Phys. Rev. Lett. 81 5039
[67] Simon C and Irvine W T M 2003 Phys. Rev. Lett. 91 110405
[68] García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R, and Grangier P 2004 Phys. Rev. Lett. 93 130409
[69] Colbeck R and Renner R 2011 Nat. Commun. 2 411
[70] Dada A C, Leach J, Buller G S, Padgett M J, and Andersson E 2011 Nat. Phys. 7 677
[71] Hensen B, Bernien H, Dréau A E et al. 2015 Nature 526 682
[72] Hensen B, Kalb N, Blok M et al. 2016 Sci. Rep. 6 30289
[73] Rosenfeld W, Burchardt D, Garthoff R, Redeker K, Ortegel N, Rau M, and Weinfurter H 2017 Phys. Rev. Lett. 119 010402
[74] Chtchelkatchev N M, Blatter G, Lesovik G B, and Martin T 2002 Phys. Rev. B 66 161320
[75] Sauret O, Martin T, and Feinberg D 2005 Phys. Rev. B 72 024544
[76] Zhong Y P, Chang H S, Satzinger K, Chou M H, Bienfait A, Conner C R, Dumur É, Grebel J, Peairs G, Povey R et al. 2019 Nat. Phys. 15 741
[77] Yao P and Hughes S 2009 Opt. Express 17 11505
[78] Pusey M F, Barrett J, and Rudolph T 2012 Nat. Phys. 8 475
[79] Barrett J 2007 Phys. Rev. A 75 032304
[80] Leggett A J 2008 Rep. Prog. Phys. 71 022001
[81] Harrigan N and Spekkens R W 2010 Found. Phys. 40 125
[82] Barnum H, Barrett J, Clark L O, Leifer M, Spekkens R, Stepanik N, Wilce A, and Wilke R 2010 New J. Phys. 12 033024
[83] Fuchs C A and Schack R 2013 Rev. Mod. Phys. 85 1693
[84] Disilvestro L and Markham D 2017 Phys. Rev. A 95 052324
[85]See the Supplemental Information for more details.
[86] Bravyi S and Kitaev A 2005 Phys. Rev. A 71 022316
[87] Deng D L and Duan L M 2013 Phys. Rev. A 88 012323
[88] Clarke D J, Sau J D, and Sarma S D 2016 Phys. Rev. X 6 021005
[89] Romito A and Gefen Y 2017 Phys. Rev. Lett. 119 157702
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 100501
[2] Zi-Gang Yuan, Xin-Yu Zhang, He Zhao, Yan-Chao Li. Energy Variance in Decoherence[J]. Chin. Phys. Lett., 2020, 37(3): 100501
[3] Yuting Hu, Yidun Wan, Yong-Shi Wu. Boundary Hamiltonian Theory for Gapped Topological Orders[J]. Chin. Phys. Lett., 2017, 34(7): 100501
[4] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 100501
[5] YUAN Zi-Gang, ZHANG Ping. Critical Behavior of the Energy Gap and Its Relation with the Berry Phase Close to the Excited State Quantum Phase Transition in the Lipkin Model[J]. Chin. Phys. Lett., 2015, 32(06): 100501
[6] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 100501
[7] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 100501
[8] WANG Min-Sheng, LIU Ling-Tao, LI Jia-Ming,. Simulation of Ionic Populations in Hot Dense Plasmas via a New Method beyond the Average Atom Model[J]. Chin. Phys. Lett., 2005, 22(7): 100501
Viewed
Full text


Abstract