Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 100401    DOI: 10.1088/0256-307X/40/10/100401
GENERAL |
Resonant Scattering of Gravitational Waves with Electromagnetic Waves
Ruodi Yan1 and Yun Kau Lau2*
1Department of Physics, Beijing Normal University, Beijing 100875, China
2Institute of Applied Mathematics, Morningside Center of Mathematics, LSSC, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Ruodi Yan and Yun Kau Lau 2023 Chin. Phys. Lett. 40 100401
Download: PDF(4653KB)   PDF(mobile)(4671KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A certain class of exact solutions of Einstein Maxwell spacetime in general relativity is discussed to demonstrate that at the level of theory, when certain parametric resonance condition is met, the interaction of electromagnetic field with a gravitational wave will display certain Lyapunov instability and lead to exponential amplification of a gravitational wave train described by certain Newman–Penrose component of the Weyl curvature. In some way akin to a free electron laser in electromagnetic theory, by the conversion of electromagnetic energy into gravitational energy in a coherent way, the feasibility of generating a pulsed-laser-like intense beam of gravitational wave is displayed.
Received: 02 May 2023      Published: 13 October 2023
PACS:  04.20.-q (Classical general relativity)  
  04.30.Nk (Wave propagation and interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/100401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/100401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruodi Yan and Yun Kau Lau
[1]Rabinovich M I and Trubetskov D I 2012 Oscillations and Waves: In Linear and Nonlinear Systems (Berlin: Springer)
[2]Starobinskii A and Churilov S 1973 Zh. Eksp. Teor. Fiz. 65 3
[3] Saulson P R 2017 Fundamentals of Interferometric Gravitational Wave Detectors (Singerpore: World Scientific)
[4] Liang C B 1995 Gen. Relativ. Gravit. 27 669
[5] Kuang Z Q, Lau Y K, and Wu X N 1999 Gen. Relativ. Gravit. 31 1327
[6]Chandrasekhar S 1998 The mathematical Theory of Black Holes (Oxford: Oxford University Press)
[7]Landau L D and Lifshits E M 2001 Mechanics (Oxford: Butterworth-Heinemann)
[8]Arnold V I 1997 Mathematical Methods of Classical Mechanics (Berlin: Springer)
[9]Whittaker E T and Watson G N 1996 A Course of Modern Analysis (Cambridge: Cambridge University Press)
[10] Hawking S W and Penrose R 1970 Proc. R. Soc. London A 314 529
[11]Hawking S and Ellis G F R 1989 The Large Scale Structure of Space-Time (Cambridge: Cambridge University Press)
[12] Braginsky V B and Mensky M B 1972 Gen. Relativ. Gravit. 3 401
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 100401
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 100401
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 100401
[4] M. Azam, S. A. Mardan, M. A. Rehman. The Stability of Some Viable Stars and Electromagnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 100401
[5] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 100401
[6] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 100401
[7] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 100401
[8] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 100401
[9] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 100401
[10] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 100401
[11] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 100401
[12] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 100401
[13] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 100401
[14] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 100401
[15] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 100401
Viewed
Full text


Abstract