CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna |
Xiang Xiong1, Zhao-Yuan Zeng1, Ruwen Peng1*, and Mu Wang1,2* |
1National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2American Physical Society, 100 Motor Parkway, Hauppauge, New York 11778, USA
|
|
Cite this article: |
Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng et al 2023 Chin. Phys. Lett. 40 017801 |
|
|
Abstract Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna (LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the left-handed circularly polarized (LCP) or the right-handed circularly polarized (RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths. Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.
|
|
Received: 19 October 2022
Editors' Suggestion
Published: 21 December 2022
|
|
PACS: |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
78.60.Hk
|
(Cathodoluminescence, ionoluminescence)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
|
|
|
[1] | Kliger D S, Lewis J W, and Randall C E 1990 Polarized Light in Optics and Spectroscopy (Boston: Academic Press) |
[2] | Imai Y, Nakano Y, Kawai T, and Yuasa J 2018 Angew. Chem. Int. Ed. 57 8973 |
[3] | La P A and Wang M D 2004 Phys. Rev. Lett. 92 190801 |
[4] | Gisin N and Thew R 2007 Nat. Photon. 1 165 |
[5] | Hecht E 2017 Optics (Boston: Pearson Education, Inc.) |
[6] | Born M, Wolf E, and Bhatia A B 2019 Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge: Cambridge University Press) |
[7] | Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z, and Capasso F 2012 Nano Lett. 12 6328 |
[8] | Gao Y J, Xiong X, Wang Z H, Chen F, Peng R W, and Wang M 2020 Phys. Rev. X 10 031035 |
[9] | Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, and Wang M 2014 Phys. Rev. X 4 021026 |
[10] | Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, and Wang M 2013 Phys. Rev. B 88 161104 |
[11] | Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, and Hasman E 2016 Science 352 1202 |
[12] | Wang Z J, Jia H, Yao K, Cai W S, Chen H S, and Liu Y M 2016 ACS Photon. 3 2096 |
[13] | Kim M, Lee D, and Rho J 2021 Laser Photon. Rev. 15 2100138 |
[14] | Polman A, Kociak M, and de Abajo F J G 2019 Nat. Mater. 18 1158 |
[15] | Fung K H, Kumar A, and Fang N X 2014 Phys. Rev. B 89 045408 |
[16] | Chi C, Jiang Q, Liu Z X, Zheng L H, Jiang M L, Zhang H, Lin F, Shen B, and Fang Z Y 2021 Sci. Adv. 7 eabf8011 |
[17] | Matsukata T, de Abajo F J G, and Sannomiya T 2021 ACS Nano 15 2219 |
[18] | Wang J X, Li G H, Ou K, Yu F L, Chen J, Li Z F, Chen X S, and Lu W 2021 J. Phys. D 54 105105 |
[19] | Mignuzzi S, Mota M, Coenen T, Li Y, Mihai A P, Petrov P K, Oulton R F M, Maier S A, and Sapienza R 2018 ACS Photon. 5 1381 |
[20] | Osorio C I, Coenen T, Brenny B J M, Polman A, and Koenderink A F 2016 ACS Photon. 3 147 |
[21] | Zhao X M, Du C L, Leng R, Li L, Luo W W, Wu W, Xiang Y X, Ren M X, Zhang X Z, Cai W, and Xu J J 2021 Nanoscale Adv. 3 4286 |
[22] | Li L, Zhao D P, Fan J, Huang R, Wu W, Ren M X, Zhang X Z, Cai W, and Xu J J 2020 J. Opt. 22 035003 |
[23] | Asenjo-Garcia A and de Abajo F J G 2014 Phys. Rev. Lett. 113 066102 |
[24] | Harvey T R, Henke J W, Kfir O, Lourenco-Martins H, Feist A, de Abajo F J G, and Ropers C 2020 Nano Lett. 20 4377 |
[25] | Zu S, Han T Y, Jiang M L, Liu Z X, Jiang Q, Lin F, Zhu X, and Fang Z Y 2019 Nano Lett. 19 775 |
[26] | Wang M J, Salut R, Lu H H, Suarez M A, Martin N, and Grosjean T 2019 Light Sci. Appl. 8 76 |
[27] | Ding F, Tang S, and Bozhevolnyi S I 2021 Adv. Photo. Res. 2 2000173 |
[28] | Li J X, Yu P, Cheng H, Liu W W, Li Z C, Xie B Y, Chen S Q, and Tian J G 2016 Adv. Opt. Mater. 4 91 |
[29] | Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press) |
[30] | Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, and Fang N X 2009 ACS Nano 3 2965 |
[31] | Zheng L H, Liu Z X, Liu D L, Wang X G, Li Y, Jiang M L, Lin F, Zhang H, Shen B, Zhu X, Gong Y J, and Fang Z Y 2021 Nat. Commun. 12 291 |
[32] | Gao Y J, Wang Z, Jiang Y, Peng R W, Wang Z Y, Qi D X, Fan R H, Tang W J, and Wang M 2022 Phys. Rev. Lett. 129 023601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|