Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 017801    DOI: 10.1088/0256-307X/40/1/017801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna
Xiang Xiong1, Zhao-Yuan Zeng1, Ruwen Peng1*, and Mu Wang1,2*
1National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2American Physical Society, 100 Motor Parkway, Hauppauge, New York 11778, USA
Cite this article:   
Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng et al  2023 Chin. Phys. Lett. 40 017801
Download: PDF(15358KB)   PDF(mobile)(15364KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna (LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the left-handed circularly polarized (LCP) or the right-handed circularly polarized (RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths. Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.
Received: 19 October 2022      Editors' Suggestion Published: 21 December 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/017801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/017801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang Xiong
Zhao-Yuan Zeng
Ruwen Peng
and Mu Wang
[1]Kliger D S, Lewis J W, and Randall C E 1990 Polarized Light in Optics and Spectroscopy (Boston: Academic Press)
[2] Imai Y, Nakano Y, Kawai T, and Yuasa J 2018 Angew. Chem. Int. Ed. 57 8973
[3] La P A and Wang M D 2004 Phys. Rev. Lett. 92 190801
[4] Gisin N and Thew R 2007 Nat. Photon. 1 165
[5]Hecht E 2017 Optics (Boston: Pearson Education, Inc.)
[6]Born M, Wolf E, and Bhatia A B 2019 Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge: Cambridge University Press)
[7] Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z, and Capasso F 2012 Nano Lett. 12 6328
[8] Gao Y J, Xiong X, Wang Z H, Chen F, Peng R W, and Wang M 2020 Phys. Rev. X 10 031035
[9] Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, and Wang M 2014 Phys. Rev. X 4 021026
[10] Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, and Wang M 2013 Phys. Rev. B 88 161104
[11] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, and Hasman E 2016 Science 352 1202
[12] Wang Z J, Jia H, Yao K, Cai W S, Chen H S, and Liu Y M 2016 ACS Photon. 3 2096
[13] Kim M, Lee D, and Rho J 2021 Laser Photon. Rev. 15 2100138
[14] Polman A, Kociak M, and de Abajo F J G 2019 Nat. Mater. 18 1158
[15] Fung K H, Kumar A, and Fang N X 2014 Phys. Rev. B 89 045408
[16] Chi C, Jiang Q, Liu Z X, Zheng L H, Jiang M L, Zhang H, Lin F, Shen B, and Fang Z Y 2021 Sci. Adv. 7 eabf8011
[17] Matsukata T, de Abajo F J G, and Sannomiya T 2021 ACS Nano 15 2219
[18] Wang J X, Li G H, Ou K, Yu F L, Chen J, Li Z F, Chen X S, and Lu W 2021 J. Phys. D 54 105105
[19] Mignuzzi S, Mota M, Coenen T, Li Y, Mihai A P, Petrov P K, Oulton R F M, Maier S A, and Sapienza R 2018 ACS Photon. 5 1381
[20] Osorio C I, Coenen T, Brenny B J M, Polman A, and Koenderink A F 2016 ACS Photon. 3 147
[21] Zhao X M, Du C L, Leng R, Li L, Luo W W, Wu W, Xiang Y X, Ren M X, Zhang X Z, Cai W, and Xu J J 2021 Nanoscale Adv. 3 4286
[22] Li L, Zhao D P, Fan J, Huang R, Wu W, Ren M X, Zhang X Z, Cai W, and Xu J J 2020 J. Opt. 22 035003
[23] Asenjo-Garcia A and de Abajo F J G 2014 Phys. Rev. Lett. 113 066102
[24] Harvey T R, Henke J W, Kfir O, Lourenco-Martins H, Feist A, de Abajo F J G, and Ropers C 2020 Nano Lett. 20 4377
[25] Zu S, Han T Y, Jiang M L, Liu Z X, Jiang Q, Lin F, Zhu X, and Fang Z Y 2019 Nano Lett. 19 775
[26] Wang M J, Salut R, Lu H H, Suarez M A, Martin N, and Grosjean T 2019 Light Sci. Appl. 8 76
[27] Ding F, Tang S, and Bozhevolnyi S I 2021 Adv. Photo. Res. 2 2000173
[28] Li J X, Yu P, Cheng H, Liu W W, Li Z C, Xie B Y, Chen S Q, and Tian J G 2016 Adv. Opt. Mater. 4 91
[29]Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)
[30] Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, and Fang N X 2009 ACS Nano 3 2965
[31] Zheng L H, Liu Z X, Liu D L, Wang X G, Li Y, Jiang M L, Lin F, Zhang H, Shen B, Zhu X, Gong Y J, and Fang Z Y 2021 Nat. Commun. 12 291
[32] Gao Y J, Wang Z, Jiang Y, Peng R W, Wang Z Y, Qi D X, Fan R H, Tang W J, and Wang M 2022 Phys. Rev. Lett. 129 023601
Related articles from Frontiers Journals
[1] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 017801
[2] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 017801
[3] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 017801
[4] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 017801
[5] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 017801
[6] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 017801
[7] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 017801
[8] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 017801
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 017801
[10] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 017801
[11] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 017801
[12] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 017801
[13] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 017801
[14] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 017801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 017801
Viewed
Full text


Abstract