CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$ |
Xue Ming1, Chengping He1, Xiyu Zhu1, Huiyang Gou2, and Hai-Hu Wen1* |
1Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 2Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
|
|
Cite this article: |
Xue Ming, Chengping He, Xiyu Zhu et al 2023 Chin. Phys. Lett. 40 017403 |
|
|
Abstract We successfully grow a new superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+ \delta}$ (Ga-1234) with a transition temperature of 113 K, using the Walker-type high-pressure synthesis apparatus. X-ray diffraction measurements on the powderized samples show a mixture of the Ga-1234 phase and the Ca$_{0.85}$CuO$_{2}$ phase, and the former is dominant. Under the scanning electron microscope, plate-like crystals of the Ga-based 1234 phase with shiny surfaces can be seen. The obtained local chemical compositions revealed by energy dispersion x-ray spectroscopy are very close to the stoichiometric values. On some sub-millimeter crystal-like samples of the 1234 phase, we obtain a full Meissner shielding volume. From the temperature-dependent magnetizations, we determine the irreversibility fields and find that the system exhibits a highly anisotropic behavior.
|
|
Received: 23 November 2022
Published: 01 January 2023
|
|
PACS: |
74.72.-h
|
(Cuprate superconductors)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
|
|
|
[1] | Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 |
[2] | Sheng Z Z and Hermann A M 1988 Nature 332 138 |
[3] | Tokura Y, Takagi H, and Uchida S 1989 Nature 337 345 |
[4] | Azuma M, Hiroi Z, Takano M, Bando Y, and Takeda Y 1992 Nature 356 775 |
[5] | Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908 |
[6] | Maeda H, Tanaka Y, Fukutomi M, and Asano T 1988 Jpn. J. Appl. Phys. 27 L209 |
[7] | Schilling A, Cantoni M, Guo J D, and Ott H R 1993 Nature 363 56 |
[8] | Chu C W, Gao L, Chen F, Huang Z J, Meng R L, and Xue Y Y 1993 Nature 365 323 |
[9] | Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, and Mao H K 1994 Phys. Rev. B 50 4260 |
[10] | Chu C W, Deng L Z, and Lv B 2015 Physica C 514 290 |
[11] | Tokura Y 1991 Physica C 185–189 174 |
[12] | Takayama-Muromachi E 1998 Chem. Mater. 10 2686 |
[13] | Zhang Y, Liu W H, Si J, Zhu X Y, He C P, Zhao H N, and Wen H H 2018 Sci. Chin. Phys. Mech. & Astron. 61 97412 |
[14] | Walker D, Carpenter M A, and Hitch C M 1990 Am. Mineral. 75 1020 |
[15] | Cheary R W and Coelho A 1992 J. Appl. Crystallogr. 25 109 |
[16] | Rietveld H M 1969 J. Appl. Crystallogr. 2 65 |
[17] | Antipov E V, Loureiro S M, Chaillout C, Capponi J J, Bordet P, Tholence J L, Putilin S N, and Marezio M 1993 Physica C 215 1 |
[18] | Ihara H, Sugise R, Hirabayashi M, Terada N, Jo M, Hayashi K, Negishi A, Tokumoto M, Kimura Y, and Shimomura T 1988 Nature 334 510 |
[19] | Zhang Y, Liu W H, Zhu X Y, Zhao H N, Hu Z, He C P, and Wen H H 2018 Sci. Adv. 4 eaau0192 |
[20] | Nishizaki T, Naito T, and Kobayashi N 1998 Phys. Rev. B 58 11169 |
[21] | Karpinski J, Angst M, Meijer G I, Kazakov S, Schwer H, Wisniewski A, and Puzniak R 1999 J. Low Temp. Phys. 117 735 |
[22] | Clayton N, Musolino N, Giannini E, Garnier V, and Flükiger R 2004 Supercond. Sci. Technol. 17 S563 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|