CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material |
Fazhi Yang1,2†, Giao Ngoc Phan1,3†*, Renjie Zhang1,2, Jin Zhao1,2, Jiajun Li1,2, Zouyouwei Lu1,2, John Schneeloch4, Ruidan Zhong4,6, Mingwei Ma1,5, Genda Gu4, Xiaoli Dong1,2,5, Tian Qian1,5, and Hong Ding1,3,6* |
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China 3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA 5Songshan Lake Materials Laboratory, Dongguan 523808, China 6Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
|
|
Cite this article: |
Fazhi Yang, Giao Ngoc Phan, Renjie Zhang et al 2023 Chin. Phys. Lett. 40 017401 |
|
|
Abstract We report the observation for the $p_{z}$ electron band and the band inversion in Fe$_{1+y}$Te$_{x}$Se$_{1-x}$ with angle-resolved photoemission spectroscopy. Furthermore, we found that excess Fe ($y> 0$) inhibits the topological band inversion in Fe$_{1+y}$Te$_{x}$Se$_{1-x}$, which explains the absence of Majorana zero modes in previous reports for Fe$_{1+y}$Te$_{x}$Se$_{1-x}$ with excess Fe. Based on our analysis of different amounts of Te doping and excess Fe, we propose a delicate topological phase in this material. Thanks to this delicate phase, one may be able to tune the topological transition via applying lattice strain or carrier doping.
|
|
Received: 30 October 2022
Published: 29 December 2022
|
|
PACS: |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
|
|
|
[1] | Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, and Shik S 2018 Science 360 182 |
[2] | Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, and Gao H J 2018 Science 362 333 |
[3] | Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J, and Ding H 2020 Nat. Commun. 11 5688 |
[4] | Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, and Gao H J 2021 Nat. Commun. 12 1348 |
[5] | Kong L Y, Cao L, Zhu S Y, Papaj M, Dai G Y, Li G, Fan P, Liu W Y, Yang F Z, Wang X C, Du S X, Jin C Q, Fu L, Gao H J, and Ding H 2021 Nat. Commun. 12 4146 |
[6] | Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook J S, Wang Z Q, and Gao H J 2022 Nature 606 890 |
[7] | Liu W Y, Hu Q X, Wang X C, Zhong Y G, Yang F Z, Kong L Y, Cao L, Li G, Okazaki K, Kondo T, Jin C Q, Zhang F C, Xu J P, Gao H J, and Ding H 2022 Quantum Front 1 20 |
[8] | Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X, and Fang Z 2015 Phys. Rev. B 92 115119 |
[9] | Zhang P, Wang Z J, Wu X X et al. 2019 Nat. Phys. 15 41 |
[10] | Lohani H, Hazra T, Ribak A, Nitzav Y, Fu H X, Yan B H, Randeria M, and Kanigel A 2020 Phys. Rev. B 101 245146 |
[11] | Peng X L, Li Y, Wu X X, Deng H B, Shi X, Fan W H, Li M, Huang Y B, Qian T, Richard P, Hu J P, Pan S H, Mao H Q, Sun Y J, and Ding H 2019 Phys. Rev. B 100 155134 |
[12] | Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2019 Nat. Mater. 18 811 |
[13] | Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y, and Wen H H 2018 Nat. Commun. 9 970 |
[14] | Chiu C K, Machida T, Huang Y Y, Hanaguri T, and Zhang F C 2020 Sci. Adv. 6 eaay0443 |
[15] | Pathak V, Plugge S, and Franz M 2021 Ann. Phys. 435 168431 |
[16] | Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y Q, Liu W Y, Wang D F, Fan P, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Gao H J, and Ding H 2019 Nat. Phys. 15 1181 |
[17] | Li Y M, Zaki N, Garlea V O, Savici A T, Fobes D, Xu Z J, Camino F, Petrovic C, Gu G D, Johnson P D, Tranquada J M, and Zaliznyak I A 2021 Nat. Mater. 20 1221 |
[18] | Singh U R, White S C, Schmaus S, Tsurkan V, Loidl A, Deisenhofer J, and Wahl P 2013 Phys. Rev. B 88 155124 |
[19] | Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, and Pan S H 2015 Nat. Phys. 11 543 |
[20] | Li H, Ma M W, Liu S B, Zhou F, and Dong X L 2020 Chin. Phys. B 29 127404 |
[21] | Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, and Takahashi T 2014 Phys. Rev. Lett. 113 237001 |
[22] | Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P, and Ding H 2015 Phys. Rev. B 91 214503 |
[23] | Yin Z P, Haule K, and Kotliar G 2011 Nat. Mater. 10 932 |
[24] | Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus D, and Mozharivskyj Y 2009 Phys. Rev. B 79 094521 |
[25] | Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, and Takahashi T 2017 Phys. Rev. B 95 224507 |
[26] | Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lohneysen H, Shibauchi T, and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309 |
[27] | Zaki N, Gu G D, Tsvelik A, Wu C J, and Johnson P D 2021 Proc. Natl. Acad. Sci. USA 118 e2007241118 |
[28] | Rameau J D, Zaki N, Gu G D, Johnson P D, and Weinert M 2019 Phys. Rev. B 99 205117 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|