Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 017102    DOI: 10.1088/0256-307X/40/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Correlation Renormalized and Induced Spin-Orbit Coupling
Kun Jiang1,2*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Kun Jiang 2023 Chin. Phys. Lett. 40 017102
Download: PDF(3526KB)   PDF(mobile)(3953KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interplay of spin-orbit coupling (SOC) and electron correlation generates a bunch of emergent quantum phases and transitions, especially topological insulators and topological transitions. We find that electron correlation will induce extra large SOC in multi-orbital systems under atomic SOC and change ground state topological properties. Using the Hartree–Fock mean field theory, phase diagrams of $p_{x}/p_{y}$ orbital ionic Hubbard model on honeycomb lattice are well studied. In general, correction of strength of SOC $\delta \lambda \propto (U'-J)$. Due to breaking down of rotation symmetry, form of SOC on multi-orbital materials is also changed under correlation. If a non-interacting system is close to fermionic instability, spontaneous generalized SOC can also be found. Using renormalization group, SOC is leading instability close to quadratic band-crossing point. Mean fields at quadratic band-crossing point are also studied.
Received: 11 November 2022      Editors' Suggestion Published: 12 December 2022
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/017102       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/017102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Jiang
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3]Ashcroft N W and Mermin N D 1972 Solid State Physics (New York: Rinehart and Winston)
[4] Witczak-Krempa W, Chen G, Kim Y B, and Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57
[5] Balents D P A L 2010 Nat. Phys. 6 376
[6] Liu G Q, Antonov V N, Jepsen O, and Andersen O K 2008 Phys. Rev. Lett. 101 026408
[7] Zhang G R, Gorelov E, Sarvestani E, and Pavarini E 2016 Phys. Rev. Lett. 116 106402
[8] Kim M, Mravlje J, Ferrero M, Parcollet O, and Georges A 2018 Phys. Rev. Lett. 120 126401
[9] Li J, Yao Q, Wu L, Hu Z, Gao B, Wan X, and Liu Q 2022 Nat. Commun. 13 919
[10] Qiu W X, Zou J Y, Luo A Y, Cui Z H, Song Z D, Gao J H, Wang Y L, and Xu G 2021 Phys. Rev. Lett. 127 147202
[11] Coury M E A, Dudarev S L, Foulkes W M C, Horsfield A P, Ma P W, Spencer J S 2016 Phys. Rev. B 93 075101
[12]Fetter A and Walecka J 2003 Quantum Theory of Many-Particle Systems (New York: Dover)
[13] Wu C J, Bergman D, Balents L, and Sarma S D 2007 Phys. Rev. Lett. 99 070401
[14] Wu C J 2008 Phys. Rev. Lett. 100 200406
[15] Zhang G F, Li Y, and Wu C 2014 Phys. Rev. B 90 075114
[16] Yang K Y, Zhu W, Di X, Okamoto S, Wang Z, and Ran Y 2011 Phys. Rev. B 84 201104(R)
[17]See the Supplemental Material for more detailed discussions.
[18] Zhou S, Wang Y, and Wang Z 2014 Phys. Rev. B 89 195119
[19] Wu C J and Zhang S C 2004 Phys. Rev. Lett. 93 036403
[20] Sun K, Yao H, Fradkin E, and Kivelson S A 2009 Phys. Rev. Lett. 103 046811
[21] Murray J M and Vafek O 2014 Phys. Rev. B 89 201110(R)
[22] Tsai W F, Fang C, Yao H, and Hu J P 2015 New J. Phys. 17 055016
[23] Liechtenstein A I, Anisimov V I, and Zaanen J 1995 Phys. Rev. B 52 R5467(R)
[24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505
[25] Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P, and Ding H 2015 Phys. Rev. B 91 214503
[26] Suzuki Y, Shimojima T, Sonobe T, Nakamura A, Sakano M, Tsuji H, Omachi J, Yoshioka K, Kuwata-Gonokami M, Watashige T, Kobayashi R, Kasahara S, Shibauchi T, Matsuda Y, Yamakawa Y, Kontani H, and Ishizaka K 2015 Phys. Rev. B 92 205117
[27] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[28] Wang F and Senthil T 2011 Phys. Rev. Lett. 106 136402
[29] Zhou S, Jiang K, Chen H, and Wang Z 2017 Phys. Rev. X 7 041018
[30] Kubo K 2022 J. Phys. Soc. Jpn. 91 124707
Related articles from Frontiers Journals
[1] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 017102
[2] Yanting Li , Bixia Gao , Qiyu Wang , Juan Zhang , and Qiaoni Chen. Coexistence of Charge Order and Antiferromagnetic Order in an Extended Periodic Anderson Model[J]. Chin. Phys. Lett., 2021, 38(8): 017102
[3] Chuang Chen, Xiao Yan Xu, Yang Qi, Zi Yang Meng. Metal to Orthogonal Metal Transition[J]. Chin. Phys. Lett., 2020, 37(4): 017102
[4] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 017102
[5] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 017102
[6] Yuting Hu, Yidun Wan, Yong-Shi Wu. Boundary Hamiltonian Theory for Gapped Topological Orders[J]. Chin. Phys. Lett., 2017, 34(7): 017102
[7] XU Yuan-Hui, LIU Hui-Yun, HAO Xian-Feng, CHEN Rong-Na, GAO Fa-Ming. First Principles Study on Mechanical Properties of Superhard α-Ga Boron[J]. Chin. Phys. Lett., 2015, 32(02): 017102
[8] QIU Ping-Yi. First-principles Prediction for Mechanical and Optical Properties of Al3BC3[J]. Chin. Phys. Lett., 2014, 31(06): 017102
[9] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 017102
[10] YU Zhi-Ming, LIU Yu-Liang. A New Perspective to Study the Correlation Effect of the Three-Dimensional Electron Gas[J]. Chin. Phys. Lett., 2014, 31(1): 017102
[11] WU Li-Juan, ZHANG Wen-Tong, ZHANG Bo, LI Zhao-Ji. A Novel Silicon-on-Insulator Super-Junction Lateral-Double-Diffused Metal-Oxide-Semiconductor Transistor with T-Dual Dielectric Buried Layers[J]. Chin. Phys. Lett., 2013, 30(12): 017102
[12] LIU Yu-Liang. An Effective Description of Electron Correlation in the Green Function Approach[J]. Chin. Phys. Lett., 2013, 30(4): 017102
[13] YIN Hai-Tao, LÜ, Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer[J]. Chin. Phys. Lett., 2009, 26(4): 017102
[14] TANG Li. Generation of the W State through the Cavity-Electron Interaction[J]. Chin. Phys. Lett., 2009, 26(2): 017102
[15] HU Yong-Hong, LIU Zhong-Zhu. A Chiral Macroscopic Force between Liquid of Butyl Alcohol and Copper Block[J]. Chin. Phys. Lett., 2008, 25(11): 017102
Viewed
Full text


Abstract